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18.02 Lecture 21. — Tue, Oct 30, 2007

Test for gradient fields.

Observe: if F = Mi + Nj is a gradient field then N, = M,. Indeed, if F = Vf then M = f,,
N = fy, 50 Ny = fyo = foy = M,.

Clai_'m: Conversely, if F' is defined and differentiable at every point of the plane, and N, = M,
then F' = M2 + Nj is a gradient field.

Example: F= —y1+x): N, =1, M, =—1, so F is not a gradient field.

Example: for which value(s) of a is F = (422 4 azy)i + (3y® + 422)j a gradient field? Answer:
N, =8z, My = ax, so a = 8.

Finding the potential: if above test says Fisa gradient field, we have 2 methods to find the
potential function f. Illustrated for the above example (taking a = 8):

Method 1: using line integrals (FTC backwards):

We know that if C' starts at (0,0) and ends at (z1,y1) then f(z1,y1) — £(0,0) = foﬁ -dr. Here
£(0,0) is just an integration constant (if f is a potential then so is f + ¢). Can also choose the
simplest curve C from (0,0) to (z1,y1)-

Simplest choice: take C' = portion of z-axis from (0,0) to (z1,0), then vertical segment from
(1,0) to (z1,y1) (picture drawn).

Then / F.di= / (422 + 8zy) dx + (3y* + 42?) dy:
C C14Co

1 4 1 4
Over C1,0<zx<z1,y=0,dy=0: / :/ (422 + 8z - 0) dx = [wg] = —23,

Y1
Over Co, 0 <y <y, x =21, dv = 0: / = / (3y* + 4af) dy = [y° + 4x%y]gl =i + daty.
Co 0
43, .3 2
So f(z1,y1) = 321 + yi + 4x7y1 (+constant).
Method 2: using antiderivatives:
We want f(z,y) such that (1) f, = 42% + 8zy, (2) f, = 3y* + 4.

Taking antiderivative of (1) w.r.t. = (treating y as a constant), we get f(z,y) = %xg’ + 4a’y+
integration constant (independent of x). The integration constant still depends on y, call it g(y).

So f(xz,y) = %:L’S + 422y + g(y). Take partial w.r.t. y, to get f, = 4% + ¢'(y).
Comparing this with (2), we get ¢'(y) = 3y, so g(y) = v +c.
Plugging into above formula for f, we finally get f(z,y) = %xS + 42y + 3 +c.

Curl.

Now we have: N, = M, &~ Fisa gradient field < F is conservative: fCﬁ -dr = 0 for any
closed curve.

(*): = only holds if F is defined everywhere, or in a “simply-connected” region — see next week.

Failure of conservativeness is given by the curl of F:

Definition: curl(F) = N, — M,.
Interpretation of curl: for a velocity field, curl = (twice) angular velocity of the rotation

component of the motion.
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(Ex: F = (a,b) uniform translation, F = (x,y) expanding motion have curl zero; whereas
F = (—y, z) rotation at unit angular velocity has curl = 2).

For a force field, curl F' = torque exerted on a test mass, measures how F' imparts rotation motion.

) . orce . d .
For translation motion: —— = acceleration = — (velocity).
Mass dt

Torque

d
For rotation effects: = angular acceleration = %(angular velocity).

Moment of inertia
18.02 Lecture 22. — Thu, Nov 1, 2007
Handouts: PS8 solutions, PS9, practice exams 3A and 3B.

Green’s theorem.

If C' is a positively oriented closed curve enclosing a region R, then

j{ﬁ-dF:// curl FdA  which means fMdHNdy:/ (N, — M,) dA.
C R C R

Example (reduce a complicated line integral to an easy f f
Let C' = unit circle centered at (2,0), counterclockwise. R = unit disk at (2,0). Then

%ye xdac—i—(a:—e dy—//N — M, dA = // x—i—e’”—e_di://mdA.
R

This is equal to area -z = 7 -2 = 27 (or by direct computation of the iterated integral). (Note:
direct calculation of the hne integral would probably involve setting x = 2 4 cos 6, y = sinf, but
then calculations get really complicated.)

Application: proof of our criterion for gradient fields.

Theorem: if F = Mi + N 7 is defined and continuously differentiable in the whole plane, then
N, = M, = F is conservative (< F is a gradient field).

If N, = M, then by Green, §, F.di= I curl F dA = [[r0dA=0.So F' is conservative.

Note: this only works if F and its curl are defined everywhere inside R. For the vector field on
PS8 Problem 2, we can’t do this if the region contains the origin — for example, the line integral
along the unit circle is non-zero even though curl(F) is zero wherever it’s defined.

Proof of Green’s theorem. 2 preliminary remarks:

1) the theorem splits into two identities, §, M dx = — [[, M, dA and §, N dy = [[, N, dA.

2) additivity: if theorem is true for R; and Ry then it’s true for the union R = Ry U Ry (picture
shown): ¢ = ., + §¢, (the line integrals along inner portions cancel out) and [[, = [[5 + [[x,-

Main step in the proof: prove §, M dx = — [ [, M, dA for “vertically simple” regions: a < z < b,
fo(x) <y < fi(x). (picture drawn). This involves calculations similar to PS5 Problem 3.

LHS: break C into four sides (C; lower, Cs right vertical segment, C3 upper, Cy left vertical
segment); f02 Mdx = fc4 M dx = 0 since x = constant on Cy and Cy. So

fc_/cl—i_/@_/(le@’fO(x))dx_/abM(w’fl(x))dx

(using along C;: parameter a < z < b, y = fo(x); along Cy, x from b to a, hence — sign; y = fi(x)).



RHS: — //R M, dA = — /ab /:(1:) M, dy dz = — /ab(M(x, Fi(@) = M(z, fo(x)) dz (= LHS).

Finally observe: any region R can be subdivided into vertically simple pieces (picture shown);
for each piece 9§Ci Mdx = — ffRi M, dA, so by additivity ¢, M dx = — [, M, dA.

Similarly ¢, N dy = [[, N, dA by subdividing into horizontally simple pieces. This completes
the proof.

Example. The area of a region R can be evaluated using a line integral: for example, fo rdy =
[Jz1dA = area(R).

This idea was used to build mechanical devices that measure area of arbitrary regions on a piece
of paper: planimeters (photo of the actual object shown, and principle explained briefly: as one
moves its arm along a closed curve, the planimeter calculates the line integral of a suitable vector
field by means of an ingenious mechanism; at the end of the motion, one reads the area).

18.02 Lecture 23. — Fri, Nov 2, 2007

Flux. The flux of a vector field F across a plane curve C'is |, o F-n ds, where nn = normal vector
to C, rotated 90° clockwise from T.

We now have two types of line integrals: work, [ F. Tds, sums F - T = component of F in
direction of C, along the curve C. Flux, [ F'-nds, sums F -n = component of F' perpendicular to
C, along the curve.

If we break C' into small pieces of length As, the flux is Zz(ﬁ -n) As;.

Physical interpretation: if Fisa velocity field (e.g. flow of a fluid), flux measures how much
matter passes through C' per unit time.

Look at a small portion of C: locally F' is constant, what passes through portion of C in unit
time is contents of a parallelogram with sides As and F (picture shown with F horizontal, and
portion of curve = diagonal line segment). The area of this parallelogram is As-height = As (ﬁ ‘).
(picture shown rotated with portion of C' horizontal, at base of parallelogram). Summing these
contributions along all of C', we get that f(]*:" -m)ds is the total flow through C per unit time;
counting positively what flows towards the right of C, negatively what flows towards the left of C,
as seen from the point of view of a point travelling along C'.

Example: C = circle of radius a counterclockwise, F = zi + yj (picture shown): along C,
F//n,and |F|=a,so F-n=a. So

/ F.nds = / ads = alength(C) = 2ma®.
C C
Meanwhile, the flux of —y& + zj across C' is zero (field tangent to C').

That was a geometric argument. What about the general situation when calculation of the line
integral is required?
Observe: di = T'ds = (dz, dy), and n is T' rotated 90° clockwise; so i ds = (dy, —dx).

So, if F=Pi+ Q7 (using new letters to make things look different; of course we could call the
components M and N), then

Lﬁ-ﬁds:L<P,Q>-(dy,—dx>:/C—de—i—de.
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(or if F = (M,N), [, —N da + M dy).

So we can compute flux using the usual method, by expressing x, y, dz, dy in terms of a parameter
variable and substituting (no example given).

Green’s theorem for flux. If C' encloses R counterclockwise, and F="Pi+ @3, then

j{ F-fds= // div(F)dA, where div(F)= P, + @y is the divergence of F.
C R

Note: the counterclockwise orientation of C' means that we count flux of F out of R through C.

Proof: j(I{ F-nds = % —Qdx + Pdy. Call M = —@Q) and N = P, then apply usual Green’s

theoremj{Mdm—i-Ndy—/ (Ng — M) dA to get
C

f de+de_// (—Qy)) dA = //dw

This proof by “renaming” the components is why we called the components P, () instead of M, N.

If we call F = (M, N) the statement becomes %—N dr + Mdy = / (M + Ny) dA.
C R
Example: in the above example (zi + yj across circle), divF = 2, so flux= [[,2dA =

2area(R) = 2ma?. If we translate C to a different position (not centered at origin) (picture shown)
then direct calculation of flux is harder, but total flux is still 27a?.

Physical interpretation: in an incompressible fluid flow, divergence measures source/sink den-
sity /rate, i.e. how much fluid is being added to the system per unit area and per unit time.



