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18.02 Lecture 18.  –  Tue, Oct 23, 2007 

Change of variables. 
Example 1: area of ellipse with semiaxes a and b: setting u = x/a, v = y/b, �� �� �� 

dx dy = ab du dv = ab du dv = πab. 
(x/a)2+(y/b)2<1 u2+v2<1 u2+v2<1 

(substitution works here as in 1-variable calculus: du = 1 dx, dv = 1 dy, so du dv = 1 dx dy. a b ab 

In general, must find out the scale factor (ratio between du dv and dx dy)? 

Example 2: say we set u = 3x−2y, v = x+y to simplify either integrand or bounds of integration. 
What is the relation between dA = dx dy and dA� = du dv? (area elements in xy- and uv-planes). 

Answer: consider a small rectangle of area ΔA = ΔxΔy, it becomes in uv-coordinates a paral­
lelogram of area ΔA�. Here the answer is independent of which rectangle we take, so we can take 
e.g. the unit square in xy-coordinates. 

In the uv-plane, u = 3 −2 x
, so this becomes a parallelogram with sides given by 1 1 

� �


v
 y

3 1

−2 1


3 −2 
1vectors �3, 1� and �−2, 1� (picture drawn), and area = det =
 = 5 =
 .
1


For any rectangle ΔA� = 5ΔA, in the limit dA� = 5dA, i.e. du dv = 5dx dy. So . . . dx dy = 
. . . 1 du dv. 5 

General case: approximation formula Δu ≈ ux Δy, Δv ≈ vx

Δu ux uy Δx 
.Δv 

≈ 
vx vy Δy 

A small xy-rectangle is approx. a parallelogram in uv-coords, but scale factor depends on x and y 

Δx + uy� � 
Δx + vyΔy, i.e. 

now. By the same argument as before, the scale factor is the determinant. 
∂(u, v) ux uyDefinition: the Jacobian is J
 . Then du dv = J dx dy.
=
 =
 |
 |

∂(x, y)
 vx vy 

(absolute value because area is the absolute value of the determinant).

Example 1: polar coordinates x = r cos θ, y = r sin θ: 

∂(x, y) 
= r cos
2 θ + r sin2 θ = r. 

cos θ −r sin θ 
r cos θ 

xr xθ=
 =
 sin θ
∂(r, θ)
 yr yθ 

So dx dy = r dr dθ, as seen before.


Example 2: compute 
� 
0
1 � 

0
1 
x2y dx dy by changing to u = x, v = xy (usually motivation is to


simplify either integrand or region; here neither happens, but we just illustrate the general method). 
∂(u, v) 1 0
ux uy1) Area element: Jacobian is
 x, so du dv = x dx dy, i.e.
=
 =
 =

∂(x, y)
 vx vy y x


dx dy = x 
1 du dv. 

2) Express integrand in terms of u, v: x2y dx dy = x2y x 
1 du dv = xy du dv = v du dv. 

3) Find bounds (picture drawn): if we integrate du dv, then first we keep v = xy constant, slice 
looks like portion of hyperbola (picture shown), parametrized by u = x. The bounds are: at the 
top boundary y = 1, so v/u = 1, i.e. u = v; at the right boundary, x = 1, so u = 1. So the inner 

1 



� � � � 

� 

2 � 1integral is v . The first slice is v = 0, the last is v = 1; so we get � 1 � 1 

v du dv. 
0 v 

Besides the picture in xy coordinates (a square sliced by hyperbolas), I also drew a picture in uv 
coordinates (a triangle), which some students may find is an easier way of getting the bounds for 
u and v. 

18.02 Lecture 19.  –  Thu, Oct 25, 2007 

Handouts: PS7 solutions; PS8. 

Vector fields. 
F� = M ı̂ + N ĵ, where M = M(x, y), N = N(x, y): at each point in the plane we have a vector 

F� which depends on x, y. 
Examples: velocity fields, e.g. wind flow (shown: chart of winds over Pacific ocean); force fields, 

e.g. gravitational field. 

Examples drawn on blackboard: (1) F� = 2ı̂ + ĵ (constant vector field); (2) F� = xı̂ ; (3) F� = 
xı̂ + yĵ (radially outwards); (4) F� = −yı̂ + xĵ (explained using that �−y, x� is �x, y� rotated 90◦ 

counterclockwise). 

Work and line integrals. 

W =(force).(distance) = F� Δ�r for a small motion Δ�r. Total work is obtained by summing these · 
along a trajectory C: get a “line integral” 

W = F� d�r = lim F� Δ�ri . 
C 

· 
Δ�r→0 

i 

· 

To evaluate the line integral, we observe C is parametrized by time, and give meaning to the 
notation F� d�r by C · � � t2 � d�r � 

F� d�r = F� dt. · · 
dtC t1 

Example: F� = −yı̂ + xĵ, C is given by x = t, y = t2, 0 ≤ t ≤ 1 (portion of parabola y = x2 from 
(0,0) to (1,1)). Then we substitute expressions in terms of t everywhere: 

d�r dx dy
F� = �−y, x� = �−t2, t�, 

dt 
= � 

dt
, 
dt 
� = �1, 2t�, � � 1 � 1 � 1d�r 1 

so F� · d�r = F� · 
dt 

dt = �−t2, t� · �1, 2t� dt = t2 dt = 
3
. (in the end things always reduce 

C 0 0 0 
to a one-variable integral.) 

In fact, the definition of the line integral does not involve the parametrization: so the result is 
the same no matter which parametrization we choose. For example we could choose to parametrize 
the parabola by x = sin θ, y = sin2 θ, 0 ≤ θ ≤ π/2. Then we’d get 

� 
F� d�r = 

� π/2 
. . . dθ, which C 0· 

would be equivalent to the previous one under the substitution t = sin θ and would again be equal 
to 1 . In practice we always choose the simplest parametrization! 3 

New notation for line integral: F� = �M,N�, and d�r = �dx, dy� (this is in fact a differential: if we 
divide both sides by dt we get the component formula for the velocity d�r/dt). So the line integral 



� � 

� � 

� � � 

� 

3 

becomes � � 
F� d�r = M dx + N dy. · 

C C 

The notation is dangerous: this is not a sum of integrals w.r.t. x and y, but really a line integral 
along C. To evaluate one must express everything in terms of the chosen parameter. 

In the above example, we have x = t, y = t2, so dx = dt, dy = 2t dt by implicit differentiation; 
then � � 1 � 1 1 −y dx + x dy = −t2 dt + t (2t) dt = t2 dt = 

3C 0 0 

(same calculation as before, using different notation). 
Geometric approach. 

Recall velocity is 
d�r 

= 
ds 

T̂ (where s =arclength, T̂ = unit tangent vector to trajectory). 
dt dt 

So d�r = T̂ ds, and F� d�r = F� T̂ ds. Sometimes the calculation is easier this way! · · 
C C 

Example: C = circle of radius a centered at origin, F� = xı̂ + yĵ, then F� T̂ = 0 (picture drawn), · 
so F� T̂ ds = 0 ds = 0.C · 

Example: same C, F� = −yı̂ +xĵ, then F� · T̂ = |F� | = a, so 
� 
C F

� · T̂ ds = 
� 

a ds = a (2πa) = 2πa2; 
checked that we get the same answer if we compute using parametrization x = a cos θ, y = a sin θ. 

18.02 Lecture 20.  –  Fri, Oct 26, 2007 

Line integrals continued. 

Recall: line integral of F� = M ı̂ + N ĵ along a curve C: F� d�r = M dx + N dy = F� T̂ ds.· · 
C C C 

Example: F� = yı̂ + xĵ, C F
� d�r for C� = C1 + C2 + C3 enclosing sector of unit disk from 0 to · 

π/4. (picture shown). Need to compute Ci 
y dx + x dy for each portion: 

1) x-axis: x = t, y = 0, dx = dt, dy = 0, 0 ≤ t ≤ 1, so 
� 

y dx+x dy = 
� 1 0 dt = 0. Equivalently, C1 � 0 

geometrically: along x-axis, y = 0 so F� = xĵ while T̂ = ı̂ so C1 
F� T̂ ds = 0.·


2) C2: x = cos θ, y = sin θ, dx = − sin θ dθ, dy = cos θ dθ, 0 ≤ θ ≤ π . So
4 � � π/4 � π/4 �
1 

�π/4 1 
y dx + x dy = sin θ(− sin θ)dθ + cos θ cos θ dθ = cos(2θ)dθ = 

2 
sin(2θ) =

2
. 

C2 0 0 0 

3) C3: line segment from ( √1
2 
, √1

2 
) to (0, 0): could take x = √1

2 
− √1

2 
t, y = same, 0 ≤ t ≤ 1, ... 

but easier: C3 backwards (“−C3”) is y = x = t, 0 ≤ t ≤ √1
2 
. Work along −C3 is opposite of work 

along C3. � � 0 � 1/
√

2 

y dx + x dy = t dt + t dt = − 2t dt = −[t2]0
1/
√

2 = − 
1 
. 

C3 1/
√

2 20 

If F� is a gradient field, F� = �f = fxı̂ + fy ĵ (f is called “potential function”), then we can 
simplify evaluation of line integrals by using the fundamental theorem of calculus. 

Fundamental theorem of calculus for line integrals: 



� 

� 
� � 

� 

� 

4 

�f d�r = f(P1) − f(P0) when C runs from P0 to P1.· 
C � � 

Equivalently with differentials: fx dx + fy dy = df = f(P1) − f(P0). Proof: � � C � C 
t1 dx dy t1 d �f · d�r = (fx 

dt 
+ fy 

dt 
) dt = 

dt
(f(x(t), y(t)) dt = [f(x(t), y(t))]t

t
0

1 = f(P1) − f(P0). 
C t0 t0 

E.g., in the above example, if we set f(x, y) = xy then �f = �y, x� = F� . So can be calculated Ci 

just by evaluating f = xy at end points. Picture shown of C, vector field, and level curves. 

Consequences: for a gradient field, we have: 
Path independence: if C1, C2 have same endpoints then d�r = d�r (both equal • � C1 

�f · C2 
�f · 

to f(P1) − f(P0) by the theorem). So the line integral C �f d�r depends only on the end points, · 
not on the actual trajectory. 
• Conservativeness: if �C is a closed loop then C �f · d�r = 0 (= f(P ) − f(P )). 

(e.g. in above example, C = 0 + 12 − 2
1 = 0.) 

WARNING: this is only for gradient fields! 

Example: F� = −yı̂ + xĵ is not a gradient field: as seen Thursday, along C = circle of radius a 
counterclockwise ( � T ), C F

� d� . Hence F� is not conservative, and not a gradient field. F// ̂
� 

r = 2πa2 · 

Physical interpretation. 

If the force field F� is the gradient of a potential f , then work of F� = change in value of potential. 

E.g.: 1) F� = gravitational field, f = gravitational potential; 2) F� = electrical field; f = electrical 
potential (voltage). (Actually physicists use the opposite sign convention, F� = −�f). 

Conservativeness means that energy comes from change in potential f , so no energy can be 
extracted from motion along a closed trajectory (conservativeness = conservation of energy: the 
change in kinetic energy equals the work of the force equals the change in potential energy). 

We have four equivalent properties: 

(1) F� is conservative ( C F
� d�r = 0 for any closed curve C)� · 

(2) F d�r is path independent (same work if same end points) · 
(3) F� is a gradient field: F� = �f = fxı̂ + fy ĵ. 
(4) M dx + N dy is an exact differential (= fx dx + fy dy = df .) 
((1) is equivalent to (2) by considering C1, C2 with same endpoints, C = C1 − C2 is a closed loop. 

(3) (2) is the FTC, will be key to finding potential function: if we have path independence ⇒ ⇐
then we can get f(x, y) by computing 

� (x,y) 
F� d�r. (3) and (4) are reformulations of the same (0,0) · 

property). 


