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18.02 Lecture 18. — Tue, Oct 23, 2007

Change of variables.

Example 1: area of ellipse with semiaxes a and b: setting u = z/a, v = y/b,

// dxdy:// abdudv:ab// dudv = mab.
(z/a)2+(y/b)2<1 u2+v2<1 u2+v2<1

(substitution works here as in 1-variable calculus: du = %d:r:, dv = %dy, so dudv = ﬁdaz dy.

In general, must find out the scale factor (ratio between dudv and dx dy)?

Example 2: say we set u = 3x—2y, v = x+y to simplify either integrand or bounds of integration.
What is the relation between dA = dx dy and dA’” = dudv? (area elements in zy- and uv-planes).

Answer: consider a small rectangle of area AA = AxzAy, it becomes in uv-coordinates a paral-
lelogram of area AA’. Here the answer is independent of which rectangle we take, so we can take
e.g. the unit square in zy-coordinates.
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U
In the uv-plane, [ v ] = [ 11

} [ ZJ } , so this becomes a parallelogram with sides given by
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For any rectangle AA’ = 5AA, in the limit dA" = 5dA, i.e. dudv = 5dzdy. So [[...dzdy =
If-.. %du dv.

General case: approximation formula Au ~ u,Ax + uyAy, Av = v, Az + v,Ay, ie.

Au N_ux Uy Az
Av | 7| vy oy Ay |-

vectors (3,1) and (—2,1) (picture drawn), and area = det =

A small zy-rectangle is approx. a parallelogram in uwv-coords, but scale factor depends on z and y
now. By the same argument as before, the scale factor is the determinant.

Definition: the Jacobian is J = O(u, v) =| Y Yy

8(‘7"7 y) Uz Uy

(absolute value because area is the absolute value of the determinant).

. Then dudv = |J|dz dy.

Example 1: polar coordinates x = rcosf, y = rsin:
O(z,y)

cos@ —rsind

T, Tg
B sinf rcosf

a(r,0) Yr Yo
So dx dy = r dr df, as seen before.

' =rcos’f +rsin6 = r.

Example 2: compute fol fol 2%y dx dy by changing to u = z, v = xy (usually motivation is to
simplify either integrand or region; here neither happens, but we just illustrate the general method).
o(u,v) |10
d(z,y) y =z

Uz Uy
Vg Uy

1) Area element: Jacobian is = x, so dudv = xdxdy, i.e.
drdy = %du dv.

2) Express integrand in terms of u,v: 2%y dz dy = 2%y % dudv = zydudv = vdudv.

3) Find bounds (picture drawn): if we integrate du dv, then first we keep v = zy constant, slice
looks like portion of hyperbola (picture shown), parametrized by v = x. The bounds are: at the
top boundary y = 1, so v/u = 1, i.e. u = v; at the right boundary, x = 1, so v = 1. So the inner



2

integral is f:. The first slice is v = 0, the last is v = 1; so we get

1,1
/ / vdudv.
0 v

Besides the picture in xy coordinates (a square sliced by hyperbolas), I also drew a picture in uv
coordinates (a triangle), which some students may find is an easier way of getting the bounds for
u and v.

18.02 Lecture 19. — Thu, Oct 25, 2007
Handouts: PS7 solutions; PS8.

Vector fields.
B F = Mi + Nj, where M = M(xz,y), N = N(z,y): at each point in the plane we have a vector
F which depends on z,y.
Examples: velocity fields, e.g. wind flow (shown: chart of winds over Pacific ocean); force fields,
e.g. gravitational field.
Examples drawn on blackboard: (1) F' = 2 + j (constant vector field); (2) F = z2; (3) F =
—yi (z,

zi + yj (radially outwards); (4) F = + xj (explained using that (—y,x) is (z,y) rotated 90°
counterclockwise).

Work and line integrals.

W = (force).(distance) = F - A7 for a small motion A7. Total work is obtained by summing these
along a trajectory C: get a “line integral”

W= [ F-d | = li F. A7 |.

To evaluate the line integral, we observe C' is parametrized by time, and give meaning to the

notation fcﬁ - dF by
. 2L gi
/F-dF:/ (F-ZYat.
C tl dt

Example: F= —yi+xj, Cis given by z = t, y = t2, 0 < ¢t < 1 (portion of parabola y = z? from
(0,0) to (1,1)). Then we substitute expressions in terms of ¢ everywhere:
dr  dx d
o (55—,
1

—

F= <—y,w> - <_t27t>7 dt = <dt dt

- dr !
o / F.dr= / F.—dt = / (—t2,t)-(1,2t) dt = / t?dt = =. (in the end things always reduce
c Jo o dt 0 0 3
to a one-variable integral.)

In fact, the definition of the line integral does not involve the parametrization: so the result is
the same no matter which parametrization we choose. For example we could choose to parametrize
the parabola by = = sinf, y = sin?60, 0 < § < 7/2. Then we’d get fcﬁ -dr = OW/Q ... df, which
would be equivalent to the previous one under the substitution ¢ = sin # and would again be equal
to % In practice we always choose the simplest parametrization!

New notation for line integral: F = (M, N), and dF = (dx, dy) (this is in fact a differential: if we
divide both sides by dt we get the component formula for the velocity di/dt). So the line integral



becomes

/ﬁ-df:/deJrNdy.
C C

The notation is dangerous: this is not a sum of integrals w.r.t. x and y, but really a line integral
along C'. To evaluate one must express everything in terms of the chosen parameter.

In the above example, we have x = t, y = t2, so dz = dt, dy = 2tdt by implicit differentiation;

then . .
/—ydw+xdy:/ —tzdt+t(2t)dt:/ t2dt = =
C 0 0

(same calculation as before, using different notation).

Geometric approach.

dr ds .
Recall velocity is priin T (where s =arclength, T = unit tangent vector to trajectory).
So di = T'ds, and / F.di= / F - Tds. Sometimes the calculation is easier this way!
C C

Example: C = circle of radius a centered at origin, F' = z# 4+ yj, then F-T =0 (picture drawn),
so [ F-Tds= [0ds=0.

Example: same C, F = —yi+xj, then F-T = |F| = a, so fCﬁ-Tds = [ads = a(2ma) = 2ma?;
checked that we get the same answer if we compute using parametrization = acosf, y = asin 6.

18.02 Lecture 20. — Fri, Oct 26, 2007

Line integrals continued.

Recall: line integral of F = M@+ Nj along a curve C: / Fdr = / Mdx+ N dy = / F-Tds.
C C C

Example: F= yi + 3, |, c F.dffor C = Ci+ Co+ Cy enclosing sector of unit disk from 0 to
7 /4. (picture shown). Need to compute fCi ydzx + x dy for each portion:

1) z-axis: @ =t,y =0,dv =dt,dy=0,0<t < 1,50 [, yde+xdy = fol 0dt = 0. Equivalently,
geometrically: along z-axis, y = 0 so F= 2j while T' = & so f(h F-Tds=0.
2) Cy: w =cosf), y =sinf, dr = —sinfdb, dy = cos0df, 0 <6 < §. So

/4 w/4 1

c0s(20)df = B sin(29)] -

w/4 ™
/ ydx—&—wdy-/ sin&(—sinﬁ)dﬁ—i—cos@cos@dﬁ—/
Co 0 0 0

3) C3: line segment from (7 \1[) ( 0): could take z = 7 - 775 y=same, 0 < ¢ <1,
—C3”)is y

but easier: Cg backwards (“ =t 0<t< \f Work along —C'5 is opposite of work
along Cj.

0 1/V2 1

/ ydm+xdy:/ tdt—i—tdt:—/ ot dt = —[12]))/V? = -~

Cs 1/v2 0 2

If F is a gradient field, F = Vf = fui + fyd (f is called “potential function”), then we can
simplify evaluation of line integrals by using the fundamental theorem of calculus.

Fundamental theorem of calculus for line integrals:



/ Vf-di = f(P))— f(Py) when C runs from Py to P.
C

Equivalently with differentials: / frdx + fydy = / df = f(P1) — f(P). Proof:
C C
R b dx dy tq t
Vidr= [ (RS S d = [ L), p0) de = [,y = J(P) — f(R).
C to to

E.g., in the above example, if we set f(z,y) = zy then Vf = (y,x) = F. So fC—L can be calculated
just by evaluating f = xy at end points. Picture shown of C, vector field, and level curves.

Consequences: for a gradient field, we have:

e Path independence: if C1, Cz have same endpoints then [, Vf-di'= [, V[ -di (both equal

to f(P1) — f(Po) by the theorem). So the line integral [,V f - dF depends only on the end points,
not on the actual trajectory.

e Conservativeness: if C'is a closed loop then [, Vf-dr =0 (= f(P) — f(P)).
(e.g. in above example, [, =0+ 1 — 3 =0.)
WARNING: this is only for gradient fields!

Example: F = —y2 + zJ is not a gradient field: as seen Thursday, along C' = circle of radius a
counterclockwise (F'//T), [, F -dif = 2ma®. Hence F is not conservative, and not a gradient field.

Physical interpretation.
If the force field F is the gradient of a potential f, then work of F= change in value of potential.

— —

E.g.: 1) F = gravitational field, f = gravitational potential; 2) F' = electrical field; f = electrical
potential (voltage). (Actually physicists use the opposite sign convention, F' = —V f).

Conservativeness means that energy comes from change in potential f, so no energy can be
extracted from motion along a closed trajectory (conservativeness = conservation of energy: the
change in kinetic energy equals the work of the force equals the change in potential energy).

We have four equivalent properties:

(1) F is conservative ( Jo F - d = 0 for any closed curve C)

(2) [ F-dris path independent (same work if same end points)

(3) F is a gradient field: F = Vf = fui + 13-

(4) M dx + N dy is an exact differential (= f, dz + f, dy = df.)

((1) is equivalent to (2) by considering C, Cy with same endpoints, C' = C1 —C is a closed loop.
(3) = (2) is the FTC, < will be key to finding potential function: if we have path independence
then we can get f(x,y) by computing f((oxg;) F - dr. (3) and (4) are reformulations of the same
property).



