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18.02 Lecture 16. –  Thu, Oct 18, 2007 

Handouts: PS6 solutions, PS7. 

Double integrals. 

Recall integral in 1-variable calculus: 
� 
a
b 
f(x) dx = area below graph y = f(x) over [a, b]. 

Now: double integral R f(x, y) dA = volume below graph z = f(x, y) over plane region R. 
Cut R into small pieces ΔA the volume is approximately f(xi, yi) ΔAi. Limit as ΔA 0�� ⇒ →

gives R f(x, y) dA. (picture shown) 
How to compute the integral? By taking slices: S(x) = area of the slice by a plane parallel to 

yz-plane (picture shown): then 
xmax 

volume = S(x) dx, and for given x, S(x) = f(x, y) dy. 
xmin 

In the inner integral, x is a fixed parameter, y is the integration variable. We get an iterated 
integral. 

Example 1: z = 1 − x2 − y2, region 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 (picture shown): � 1 � 1 

(1 − x 2 − y 2) dy dx. 
0 0 

(note: dA = dy dx, limit of ΔA = Δy Δx for small rectangles). 
How to evaluate: � 1 � �1
1 1 2


1) inner integral (x is constant): (1 − x 2 − y 2) dy = (1 − x 2)y − 
3
y 3 = (1 − x 2) − 

3
=

3 
− x 2 . 

2) outer integral: 
� 1 

(
3
2 − x 2) dx = 

0 �
3
2 
x − 

3
1 
x 3 

�1 

= 
3
2 − 

3
1 

= 
3
1 
. 

0 

0 0 

Example 2: same function over the quarter disc R : x2 + y2 < 1 in the first quadrant. 
How to find the bounds of integration? Fix x constant: what is a slice parallel to y-axis? bounds 

for y = from y = 0 to y = 
√

1 − x2 in the inner integral. For the outer integral: first slice is x = 0, 
last slice is x = 1. So we get: � 1 � √1−x2 

(1 − x 2 − y 2) dy dx. 
0 0 

(note the inner bounds depend on the outer variable x; the outer bounds are constants!) 

Inner: 
� 
(1 − x 2)y − y 3/3 

�√1−x2 

= 
2
(1 − x 2)3/2 .

0 3
� 1
 2 π
Outer: (1 − x 2)3/2 dx = = .

3
· · · 

80 

(. . . = trig. substitution x = sin θ, dx = cos θ dθ, (1 − x2)3/2 = cos3 θ. Then use double angle 
formulas... complicated! I carried out part of the calculation to show how it would be done but 
then stopped before the end to save time; students may be confused about what happened exactly.) 

Exchanging order of integration.� 1 � 2 � 2 � 1
dx dy = 0 dy dx, since region is a rectangle (shown). In general, more complicated! 0 0 0 

1 
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2 � 1 � √x ey


Example 3: dy dx: inner integral has no formula. To exchange order:

0 x y


1) draw the region (here: x < y < 
√

x for 0 ≤ x ≤ 1 – picture drawn on blackboard).

2) figure out bounds in other direction: fixing a value of y, what are the bounds for x? here: left 

border is x = y2, right is x = y; first slice is y = 0, last slice is y = 1, so we get � 1 � y y � 1 y � 1 e e ydx dy = (y − y 2) dy = e − yey dy = [−yey + 2ey]10 = e − 2. 
0 y2 y 0 y 0 

(the last integration can be done either by parts, or by starting from the guess −yey and adjusting;).

18.02 Lecture 17.  – Fri, Oct 19, 2007 

Integration in polar coordinates. (x = r cos θ, y = r sin θ): useful if either integrand or 
region have a simpler expression in polar coordinates. 

Area element: ΔA � (rΔθ) Δr (picture drawn of a small element with sides Δr and rΔθ). 
Taking Δθ, Δr 0, we get dA = r dr dθ.→ �� � π/2 � 1 

Example (same as last time): (1 − x 2 − y 2) dx dy = (1 − r 2) r dr dθ. 
2�

1 1 
�1 1 

x2� 
+y

π/

≤
2

1

1 

, x≥0, y≥

π 

0 

1 π 

0 0 

Inner: 
2
r 2 − 

4
r 4

0 
=

4
. Outer: 

0 4 
dθ = 

2 4 
= 

8 
. 

In general: when setting up f r dr dθ, find bounds as usual: given a fixed θ, find initial and 
final values of r (sweep region by rays). 

Applications. 
1) The area of the region R is R 1 dA. Also, the total mass of a planar object with density 

δ = lim Δm/ΔA (mass per unit area, δ = δ(x, y) – if uniform material, constant) is given by: 
ΔA=0 

M = δ dA. 
R �� 
1

2) recall the average value of f over R is f ̄ = f dA. The center of mass, or centroid,
Area R 

of a plate with density δ is given by weighted average 
1 1 

x̄ = x δ dA, ȳ = y δ dA 
mass R mass R 

3) moment of inertia: physical equivalent of mass for rotational motion. (mass = how hard 
it is to impart translation motion; moment of inertia about some axis = same for rotation motion 
around that axis) 

Idea: kinetic energy for a single mass m at distance r rotating at angular speed ω = dθ/dt (so 
velocity v = rω) is 1

2 mv2 = 2
1 mr2ω2; I0 = mr2 is the moment of inertia. 

For a solid with density δ, I0 = r 2δ dA (moment of inertia / origin). (the rotational energy 
R 

is 1 I0ω
2).2 



�� 

�� 

3 

Moment of inertia about an axis: I = (distance to axis)2δ dA. E.g. about x-axis, distance 
R 

is |y|, so 

Ix = y 2δ dA. 
R 

Examples: 1) disk of radius a around its center (δ = 1): � 2π � a � 
r4 �a 

πa4 

I0 = r 2 r dr dθ = 2π = .
4 20 0 0 

2) same disk, about a point on the circumference? 

Setup: place origin at point so integrand is easier; diameter along x-axis; then polar equation of 
circle is r = 2a cos θ (explained on a picture). Thus � π/2 � 2a cos θ 3


I0 = r 2 r dr dθ = ... = πa4 .

−π/2 0 2



