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18.02 Lecture 11. — Tue, Oct 2, 2007

Differentials.

Recall in single variable calculus: y = f(z) = dy = f'(z) dz. Example: y = sin~!(z) = = = siny,
dx = cosydy, so dy/dx =1/cosy = 1/v/1 — 22

Total differential: f = f(z,y,2) = df = fodx + f,dy + f. dz.

This is a new type of object, with its own rules for manipulating it (df is not the same as Af!
The textbook has it wrong.) It encodes how variations of f are related to variations of x,y, z. We
can use it in two ways:

1. as a placeholder for approximation formulas: Af ~ f,Ax + f,Ay + f.Az.

2. divide by dt to get the chain rule: if z = z(t), y = y(t), z = z(t), then f becomes a function

df dx dy dz
ftand — = f,— — —
oftand oy =fogy g Ty

Example: w = 2%y + z, dw = 2zydx + 2> dy + dz. If x =t, y = €!, 2 = sint then the chain rule
gives dw/dt = (2te!) 1 + (t2) e! + cost, same as what we obtain by substitution into formula for w
and one-variable differentiation.

Can justify the chain rule in 2 ways:

1. dx =2/(t)dt, dy = y/(t) dt, dz = 2/(t) dt, so substituting we get dw = fpdz + fydy + f.dz =
fz 2! (t)dt + fy v/ (t) dt + f. 2'(t) dt, hence dw/dt.

2. (more rigorous): Aw ~ f.Az + f,Ay + f.Az, divide both sides by At and take limit as
At — 0.

Applications of chain rule:

Product and quotient formulas for derivatives: f = wv, u = u(t), v = v(t), then d(uv)/dt =
futd + fov' = vu' +uv'. Similarly with g = u/v, d(u/v)/dt = g, u' + g, v' = (1/v) v + (—u/v?) v =
(u'v —w') v

Chain rule with more variables: for example w = f(z,y), * = z(u,v), y = y(u,v). Then

dw = fydr + fydy = fo(xydu + xydv) + fy(yudu + ypdv) = (fozy + fyyu) du + (fo2 + fyys) dv.
Identifying coefficients of du and dv we get 0f/0u = fyxy + fyy, and similarly for 0f/0v.
It'snot legal to “simplify by 0z”.

Example: polar coordinates: = rcosf, y = rsin¢. Then f, = fyx, + fyy, = cos f, +sinb f,,
and similarly fy.

18.02 Lecture 12. — Thu, Oct 4, 2007

Handouts: PS4 solutions, PS5.

Gradient.

d d d d d dr
Recall chain rule: d—lzj = wx% + wydf‘:{ + wzd—j. In vector notation: d—w =Vuw- d—:

Definition: Vw = (w,, wy,w,) - GRADIENT VECTOR.

Theorem: Vw is perpendicular to the level surfaces w = c.

Example 1: w = ax + by + ¢z, then w = d is a plane with normal vector Vw = (a, b, c).
Example 2: w = 22 + 2, then w = ¢ are circles, Vw = (2, 2y) points radially out so L circles.

Example 3: w = 22 — y2, shown on applet (Lagrange multipliers applet with g disabled).



Vw is a vector whose value depends on the point (z,y) where we evaluate w.

Proof: take a curve ¥ = 7(t) contained inside level surface w = ¢. Then velocity ¢ = di/dt is in
the tangent plane, and by chain rule, dw/dt = Vw - d/dt = 0, so ¥ L Vw. This is true for every ¢
in the tangent plane.

Application: tangent plane to a surface. Example: tangent plane to 22+ 32 — 22 = 4 at (2,1,1):
gradient is (2z, 2y, —2z) = (4,2, —2); tangent plane is 4z + 2y — 2z = 8. (Here we could also solve
for z = \/2? + y? — 4 and use linear approximation formula, but in general we can’t.)

(Another way to get the tangent plane: dw = 2zdr + 2ydy — 2zdz = 4dx + 2dy — 2dz. So
Aw =~ 4Ax + 2Ay — 2Az. The level surface is Aw = 0, its tangent plane approximation is
4Az +2Ay —2Az =0, ie 4(z —2)+2(y—1) —2(z — 1) = 0, same as above).

Directional derivative. Rate of change of w as we move (z,y) in an arbitrary direction.

Take a unit vector & = (a, b), and look at straight line trajectory 7(s) with velocity 4, given by
x(s) = zo + as, y(s) = yo + bs. (unit speed, so s is arclength!)

d
Notation: w .
ds |a

Geometrically: slice of graph by a vertical plane (not parallel to z or y axes anymore). Directional
derivative is the slope. Shown on applet (Functions of two variables), with w = #? + ¢ + 1, and
rotating slices through a point of the graph.
dw ar R
Em—Vw-%—Vw'u.

Geometric interpretation: dw/ds = Vw - 4 = |Vw|cosf. Maximal for cosf = 1, when 4 is in
direction of Vw. Hence: direction of Vw is that of fastest increase of w, and |Vw| is the directional
derivative in that direction. We have dw/ds = 0 when @ 1 Vw, i.e. when 4 is tangent to direction
of level surface.

Know how to calculate dw/ds by chain rule:

18.02 Lecture 13. — Fri, Oct 5, 2007 (estimated — written before lecture)
Practice exams 2A and 2B are on course web page.

Lagrange multipliers.

Problem: min/max when variables are constrained by an equation g(z,y, z) = c.

Example: find point of zy = 3 closest to origin ? Le. minimize /22 + y2, or better f(z,y) =
2?2 4 y?, subject to g(z,y) = xy = 3. Illustrated using Lagrange multipliers applet.

Observe on picture: at the minimum, the level curves are tangent to each other, so the normal
vectors V f and Vg are parallel.

So: there exists A (“multiplier”) such that Vf = AVg. We replace the constrained min/max
problem in 2 variables with equations involving 3 variables z, y, A:

fz = Mgz 2r = \y
[y =gy i.e. here 2y = \x
g=¢c¢ Ty = 3.



20 — Ay =0
A +2y=0
requires either z = y = 0 (impossible, since zy = 3), or det = 4 — A2 = 0. So A\ = +2. No solutions
for A = —2, while A = 2 gives (v/3,v/3) and (—v/3, —v/3). (Checked on applet that Vf = 2Vg at

minimum).

In general solving may be hard and require a computer. Here, linear algebra:

Why the method works: at constrained min/max, moving in any direction along the constraint
surface g = ¢ should give df /ds = 0. So, for any @ tangent to {g = c}, %Iﬂ =Vf-u=0,ie.
4 1L Vf. Therefore Vf is normal to tangent plane to g = ¢, and so is Vg, hence the gradient
vectors are parallel.

Warning: method doesn’t say whether we have a min or a max, and second derivative test doesn’t
apply with constrained variables. Need to answer using geometric argument or by comparing values

of f.
Advanced example: surface-minimizing pyramid.

Triangular-based pyramid with given triangle as base and given volume V', using as little surface
area as possible.

Note: V = éAbase h, so height h is fixed, top vertex moves in a plane z = h.

We can set up problem in coordinates: base vertices Py = (z1,91,0), P>, P3, and top vertex
P = (z,y,h). Then areas of faces = 3|PPy x PP, etc. Calculations to find critical point of
function of (x,y) are very hard.

Key idea: use variables adapted to the geometry, instead of (z,y): let aj,as,as = lengths of
sides of the base triangle; w1, uo,us = distances in the xy-plane from the projection of P to the

sides of the base triangle. Then each face is a triangle with base length a; and height \/u? + h?
(using Pythagorean theorem).

So we must minimize f(uj,ug,ug) = %am/u% +h?+ %am/ug + h2 4+ %agwug + h2.

Constraint? (asked using flashcards; this was a bad choice, very few students responded at
all.) Decomposing base into 3 smaller triangles with heights u;, we must have g(ui,ua,us) =
Tauy + Jagug + Jaguz = Apgse.

Lagrange multiplier method: Vf = AVg gives

ai U1
2 Ju? + h?

Ul _ u9g . us
VuZ+h? \J ul + h? Vi + h?

a
=\ 51, similarly for us and ug.

We conclude A = , hence u; = us = ug, so P lies above the

incenter.



