
MIT OpenCourseWare 
http://ocw.mit.edu
 
 
 
18.02 Multivariable Calculus
Fall 2007
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.  
 

http://ocw.mit.edu
http://ocw.mit.edu/terms


18.02 Lecture 11.  – Tue, Oct 2, 2007 

Differentials. 
Recall in single variable calculus: y = f(x) dy = f �(x) dx. Example: y = sin−1(x) x = sin y, 

2dx = cos y dy, so dy/dx = 1/ cos y = 1/
√

1 − x
⇒ 

. 
⇒ 

Total differential: f = f(x, y, z) df = fx dx + fy dy + fz dz.⇒ 

This is a new type of object, with its own rules for manipulating it (df is not the same as Δf ! 
The textbook has it wrong.) It encodes how variations of f are related to variations of x, y, z. We 
can use it in two ways: 

1. as a placeholder for approximation formulas: Δf ≈ fxΔx + fyΔy + fzΔz. 
2. divide by dt to get the chain rule: if x = x(t), y = y(t), z = z(t), then f becomes a function 

of t and 
df 

= fx 
dx 

+ fy 
dy 

+ fz 
dz 

dt dt dt dt 
Example: w = x2y + z, dw = 2xy dx + x2 dy + dz. If x = t, y = et , z = sin t then the chain rule 

gives dw/dt = (2tet) 1 + (t2) et + cos t, same as what we obtain by substitution into formula for w 
and one-variable differentiation. 

Can justify the chain rule in 2 ways: 
1. dx = x�(t) dt, dy = y�(t) dt, dz = z�(t) dt, so substituting we get dw = fxdx + fydy + fzdz = 

fx x
�(t) dt + fy y

�(t) dt + fz z
�(t) dt, hence dw/dt. 

2. (more rigorous): Δw � fxΔx + fyΔy + fzΔz, divide both sides by Δt and take limit as 
Δt 0.→ 

Applications of chain rule: 
Product and quotient formulas for derivatives: f = uv, u = u(t), v = v(t), then d(uv)/dt = 

fu u
� + fv v

� = vu� + uv�. Similarly with g = u/v, d(u/v)/dt = gu u
� + gv v

� = (1/v) u� +(−u/v2) v� = 
(u�v − uv�)/v2 . 

Chain rule with more variables: for example w = f(x, y), x = x(u, v), y = y(u, v). Then 
dw = fx dx + fy dy = fx(xudu + xvdv) + fy(yudu + yvdv) = (fxxu + fyyu) du + (fxxv + fyyv) dv. 
Identifying coefficients of du and dv we get ∂f/∂u = fxxu + fyyu and similarly for ∂f/∂v.
It's   not legal to “simplify by ∂x”. 

Example: polar coordinates: x = r cos θ, y = r sin θ. Then fr = fxxr + fyyr = cos θ fx + sin θ fy, 
and similarly fθ. 

18.02 Lecture 12.  – Thu, Oct 4, 2007 

Handouts: PS4 solutions, PS5. 
Gradient. 

dw dx dy dz dw d�r
Recall chain rule: 

dt 
= wx 

dt 
+ wy 

dt 
+ wz 

dt 
. In vector notation: 

dt 
= �w · 

dt 
. 

Definition: �w = �wx, wy, wz� – GRADIENT VECTOR.

Theorem: �w is perpendicular to the level surfaces w = c.

Example 1: w = ax + by + cz, then w = d is a plane with normal vector �w = �a, b, c�.

Example 2: w = x2 + y2, then w = c are circles, �w = �2x, 2y� points radially out so ⊥ circles.

Example 3: w = x2 − y2, shown on applet (Lagrange multipliers applet with g disabled).
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 �w is a vector whose value depends on the point (x, y) where we evaluate w.  

Proof: take a curve �r = �r(t) contained inside level surface w = c. Then velocity �v = d�r/dt is in 
the tangent plane, and by chain rule, dw/dt = �w · d�r/dt = 0, so �v ⊥ �w. This is true for every �v 
in the tangent plane. 

Application: tangent plane to a surface. Example: tangent plane to x2 + y2 − z2 = 4 at (2, 1, 1): 
gradient is �2x, 2y, −2z� = �4, 2, −2�; tangent plane is 4x + 2y − 2z = 8. (Here we could also solve 
for z = x2 + y2 − 4 and use linear approximation formula, but in general we can’t.) 

(Another way to get the tangent plane: dw = 2x dx + 2y dy − 2z dz = 4dx + 2dy − 2dz. So 
Δw ≈ 4Δx + 2Δy − 2Δz. The level surface is Δw = 0, its tangent plane approximation is 
4Δx + 2Δy − 2Δz = 0, i.e. 4(x − 2) + 2(y − 1) − 2(z − 1) = 0, same as above). 

Directional derivative. Rate of change of w as we move (x, y) in an arbitrary direction. 
Take a unit vector û = �a, b�, and look at straight line trajectory �r(s) with velocity û, given by 

x(s) = x0 + as, y(s) = y0 + bs. (unit speed, so s is arclength!) 
dw

Notation: . 
ds |û

Geometrically: slice of graph by a vertical plane (not parallel to x or y axes anymore). Directional 
derivative is the slope. Shown on applet (Functions of two variables), with w = x2 + y2 + 1, and 
rotating slices through a point of the graph. 

dw d�r
Know how to calculate dw/ds by chain rule: 

ds |û
= �w · 

ds 
= �w · û. 

Geometric interpretation: dw/ds = �w û = |�w| cos θ. Maximal for cos θ = 1, when û is in · 
direction of �w. Hence: direction of �w is that of fastest increase of w, and |�w| is the directional 
derivative in that direction. We have dw/ds = 0 when û ⊥ �w, i.e. when û is tangent to direction 
of level surface. 

18.02 Lecture 13.  – Fri, Oct 5, 2007 (estimated – written before lecture) 

Practice exams 2A and 2B are on course web page. 

Lagrange multipliers. 

⎧ ⎪⎨ 

and are parallel. vectors f� �g 

⎧ ⎪⎨ 

Problem: min/max when variables are constrained by an equation g(x, y, z) = c. 

Example: find point of xy = 3 closest to origin ? I.e. minimize x2 + y2, or better f(x, y) = 
x2 + y2, subject to g(x, y) = xy = 3. Illustrated using Lagrange multipliers applet. 

Observe on picture: at the minimum, the level curves are tangent to each other, so the normal 

So: there exists λ (“multiplier”) such that �f = λ�g. We replace the constrained min/max 
problem in 2 variables with equations involving 3 variables x, y, λ: 

fx = λgx 

fy = λgy i.e. here 
2x = λy


2y = λx
⎪⎩
 ⎪⎩

g = c
 xy = 3.
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In general solving may be hard and require a computer. Here, linear algebra: 
2x − λy = 0 

−λx + 2y = 0 

requires either x = y = 0 (impossible, since xy = 3), or det = 4 − λ2 = 0. So λ = ±2. No solutions 
for λ = −2, while λ = 2 gives (

√
3, 
√

3) and (−
√

3, −
√

3). (Checked on applet that �f = 2�g at 
minimum). 

Why the method works: at constrained min/max, moving in any direction along the constraint 
surface g = c should give df/ds = 0. So, for any û tangent to {g = df = û = 0, i.e. c}, ds |û �f · 
û ⊥ �f . Therefore �f is normal to tangent plane to g = c, and so is �g, hence the gradient 
vectors are parallel. 

Warning: method doesn’t say whether we have a min or a max, and second derivative test doesn’t 
apply with constrained variables. Need to answer using geometric argument or by comparing values 
of f . 

Advanced example: surface-minimizing pyramid. 
Triangular-based pyramid with given triangle as base and given volume V , using as little surface 

area as possible. 
Note: V = 3

1 Abase h, so height h is fixed, top vertex moves in a plane z = h. 
We can set up problem in coordinates: base vertices P1 = (x1, y1, 0), P2, P3, and top vertex 

1 � �P = (x, y, h). Then areas of faces = |PP1 × PP2|, etc. Calculations to find critical point of 2 
function of (x, y) are very hard. 

Key idea: use variables adapted to the geometry, instead of (x, y): let a1, a2, a3 = lengths of 
sides of the base triangle; u1, u2, u3 = distances in the xy-plane from the projection of �P to the 

sides of the base triangle. Then each face is a triangle with base length ai and height ui 
2 + h2 

(using Pythagorean theorem). 

So we must minimize f(u1, u2, u3) = 2
1 a1 u2

1 + h2 + 2
1 a2 u2

2 + h2 + 2
1 a3 u2

3 + h2. 
Constraint? (asked using flashcards; this was a bad choice, very few students responded at 

all.) Decomposing base into 3 smaller triangles with heights ui, we must have g(u1, u2, u3) = 
1 
2 2 2a1u1 + 1 a2u2 + 1 a3u3 = Abase. 

Lagrange multiplier method: �f = λ�g gives 
a1 u1 a1� = λ , similarly for u2 and u3.2 u2 + h2 2 

1 

We conclude λ = � 
u1 = � 

u2 = � 
u3 , hence u1 = u2 = u3, so P lies above the 

u2
1 + h2 u2

2 + h2 u2
3 + h2 

incenter. 


