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18.02 Lecture 26.  –  Tue, Nov 13, 2007 

Spherical coordinates (ρ, φ, θ). 
ρ = rho = distance to origin. φ = ϕ = phi = angle down from z-axis. θ = same as in cylindrical 

coordinates. Diagram drawn in space, and picture of 2D slice by vertical plane with z, r coordinates. 
Formulas to remember: z = ρ cos φ, r = ρ sin φ (so x = ρ sin φ cos θ, y = ρ sin φ sin θ). 

2 2ρ = 
� 

x2 + y2 + z = 
√

r2 + z . The equation ρ = a defines the sphere of radius a centered at 0. 
On the surface of the sphere, φ is similar to latitude, except it’s 0 at the north pole, π/2 on the 

equator, π at the south pole. θ is similar to longitude. 

φ = π/4 is a cone (asked using flash cards) (z = r = x2 + y2). φ = π/2 is the xy-plane. 

Volume element: dV = ρ2 sin φdρ dφ dθ. 
To understand this formula, first study surface area on sphere of radius a: picture shown of a 

“rectangle” corresponding to Δφ, Δθ, with sides = portion of circle of radius a, of length aΔφ, and 
portion of circle of radius r = a sin φ, of length rΔθ = a sin φΔθ. So ΔS ≈ a2 sin φ ΔφΔθ, which 
gives the surface element dS = a2 sin φdφdθ. 

The volume element follows: for a small “box”, ΔV = ΔS Δρ, so dV = dρ dS = ρ2 sin φdρdφdθ. 

Example: recall the complicated example at end of Friday’s lecture (region sliced by a plane 
inside unit sphere). After rotating coordinate system, the question becomes: volume of the portion 
of unit sphere above the plane z = 1/

√
2? (picture drawn). This can be set up in cylindrical (left 

as exercise) or spherical coordinates. 
For fixed φ, θ we are slicing our region by rays straight out of the origin; ρ ranges from its value 

on the plane z = 1/
√

2 to its value on the sphere ρ = 1. Spherical coordinate equation of the plane: 
z = ρ cos φ = 1/

√
2, so ρ = sec φ/

√
2. The volume is: � 2π � π/4 � 1 

ρ2 sin φ dρ dφ dθ. 
0 0 √1

2 
sec φ 

(Bound for φ explained by looking at a slice by vertical plane θ = constant: the edge of the region 
is at z = r = √1

2 
). 

2π 5π
Evaluation: not done. Final answer: .

3 
− 

6
√

2 

Application to gravitation. 
Gravitational force exerted on mass m at origin by a mass ΔM at (x, y, z) (picture shown) 

is given by F� = 
G ΔM m 

, dir(F� ) = 
�x, y, z�

, i.e. F� = 
G ΔM m �x, y, z�. (G = gravitational | | 

ρ2 ρ ρ3 

constant). 
If instead of a point mass we have a solid with density δ, then we must integrate contributions 

to gravitational attraction from small pieces ΔM = δ ΔV . So ��� ��� 
F� = 

Gm �x, y, z� 
δ dV, i.e. z-component is Fz = Gm 

z 
δ dV, . . . 

ρ3 ρ3 
R R 

If we can set up to use symmetry, then Fz can be computed nicely using spherical coordinates. 
General setup: place the mass m at the origin (so integrand is as above), and place the solid 

so that the z-axis is an axis of symmetry. Then F� = �0, 0, Fz� by symmetry, and we have only one 
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component to compute. Then ��� ��� ��� 
z ρ cos φ 

Fz = Gm 
ρ3 δ dV = Gm 

ρ3 δ ρ2 sin φdρ dφ dθ = Gm δ cos φ sin φdρ dφ dθ. 
R R R 

Example: Newton’s theorem: the gravitational attraction of a spherical planet with uniform 
density δ is the same as that of the equivalent point mass at its center. 

[[Setup: the sphere has radius a and is centered on the positive z-axis, tangent to xy-plane at 
the origin; the test mass is m at the origin. Then ��� 

z 
� 2π � π/2 � 2a cos φ 4 GMm 

Fz = Gm δ dV = Gm δ cos φ sin φdρ dφ dθ = = Gmδ πa = 
ρ3 · · · 

3 a2 
R 0 0 0 

where M = mass of the planet = 4
3 πa3δ. (The bounds for ρ and φ need to be explained carefully, 

by drawing a diagram of a vertical slice with z and r coordinate axes, and the inscribed right 
triangle with vertices the two poles of the sphere + a point on its surface, the hypothenuse is the 
diameter 2a and we get ρ = 2a cos φ for the spherical coordinate equation of the sphere).]] 

18.02 Lecture 27.  –  Thu, Nov 15, 2007 

Handouts: PS10 solutions, PS11 

Vector fields in space. 

At every point in space, F� = P ̂ı + Qĵ + Rk̂, where P,Q,R are functions of x, y, z. 

Examples: force fields (gravitational force F� = −c�x, y, z�/ρ3; electric field E, magnetic field B); 
velocity fields (fluid flow, v = v(x, y, z)); gradient fields (e.g. temperature and pressure gradients). 

Flux. 
Recall: in 2D, flux of a vector field F� across a curve C = C F

� n̂ ds.· 
In 3D, flux of a vector field is a double integral: flux through a surface, not a curve! 

F� vector field, S surface, n̂ unit normal vector: Flux = F� n̂ dS.· 
Notation: dS� = n̂ dS. (We’ll see that dS� is often easier to compute than n̂ and dS). 
Remark: there are 2 choices for n̂ (choose which way is counted positively!) 

Geometric interpretation of flux: 

As in 2D, if F� = velocity of a fluid flow, then flux = flow per unit time across S. 
Cut S into small pieces, then over each small piece: what passes through ΔS in unit time is the 

contents of a parallelepiped with base ΔS and third side given by F� . 

Volume of box = base × height = (F� n̂) ΔS.· 

• Examples: 

1) F� = xı̂ + yĵ + zk̂ through sphere of radius a centered at 0. 
n̂ = a 

1 �x, y, z� (other choice: −a 
1 �x, y, z�; traditionally choose n̂ pointing out). 

F� n̂ = �x, y, z� · n̂ = 1 (x2 + y2 + z2) = a, so F� n̂dS = a dS = a (4πa2).· a S S· 
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z2) Same sphere, H� = zk̂: H� n̂ = a 
2 
.· 

z2 � 2π � π a2 cos2 φ 
� π 4 

H� dS� = dS = a 2 sin φdφdθ = 2πa3 cos2 φ sin φdφ = πa3 .· 
a a 3S S 0 0 0 

Setup. Sometimes we have an easy geometric argument, but in general we must compute the 
surface integral. The setup requires the use of two parameters to describe the surface, and F� n̂ dS· 
must be expressed in terms of them. How to do this depends on the type of surface. For now, 
formulas to remember: 

0) plane z = a parallel to xy-plane: n̂ = ±k̂, dS = dx dy. (similarly for planes // xz or yz-plane). 
1) sphere of radius a centered at origin: use φ, θ (substitute ρ = a for evaluation); n̂ = a 

1 �x, y, z�, 
dS = a2 sin φdφ dθ. 

2) cylinder of radius a centered on z-axis: use z, θ (substitute r = a for evaluation): n̂ is radially 
out in horizontal directions away from z-axis, i.e. n̂ = a 

1 �x, y, 0�; and dS = a dz dθ (explained by 
drawing a picture of a “rectangular” piece of cylinder, ΔS = (Δz) (aΔθ)). 

3) graph z = f(x, y): use x, y (substitute z = f(x, y)). We’ll see on Friday that n̂ and dS 
separately are complicated, but n̂ dS = �−fx, −fy, 1� dx dy. 

18.02 Lecture 28.  –  Fri, Nov 16, 2007 

Last time, we defined the flux of F� through surface S as F� n̂ dS, and saw how to set up in · 
various cases. Continue with more: 

Flux through a graph. If S is the graph of some function z = f(x, y) over a region R of 
xy-plane: use x and y as variables. Contribution of a small piece of S to flux integral? 

Consider portion of S lying above a small rectangle Δx Δy in xy-plane. In linear approximation 
it is a parallelogram. (picture shown) 

The vertices are (x, y, f(x, y)); (x + Δx, y, f(x + Δx, y)); (x, y + Δy, f(x, y + Δy)); etc. Linear 
approximation: f(x + Δx, y) � f(x, y) + Δx fx(x, y), and f(x, y + Δy) � f(x, y) + Δy fy(x, y). 

So the sides of the parallelogram are �Δx, 0, Δx fx� and �0, Δy, Δy fy�, and 

ı̂ ĵ k̂
ΔS� = (Δx �1, 0, fx�) × (Δy �0, 1, fy�) = ΔxΔy 1 0 fx 

0 1 fy 

= �−fx, −fy, 1�ΔxΔy. 

So dS� = ±�−fx, −fy, 1�dx dy. 

(From this we can get n̂ = dir(dS�) = 
�−fx, −fy, 1� and dS
=
|
dS�
|
=
 fx 

2 + fy 
2 + 1 dx dy. The 

f2 + f2 + 1 x y 

conversion factor 
√

between dS and dA relates area on S to area of projection in xy-plane.) · · · 

Example: flux of F� = zk̂ through S = portion of paraboloid z = x2 + y2 above unit disk, • 
oriented with normal pointing up (and into the paraboloid): geometrically flux should be > 0 
(asked using flashcards). We have n̂ dS = �−2x, −2y, 1� dx dy, and �� �� �� � 2π � 1 

F� dS� = z dx dy = (x 2 + y 2) dx dy = r 2 r dr dθ = π/2.· 
S S S 0 0 

Parametric surfaces. If we can describe S by parametric equations x = x(u, v), y = y(u, v), 
z = z(u, v) (i.e. �r = �r(u, v)), then we can set up flux integrals using variables u, v. To find dS�, 
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consider a small portion of surface corresponding to changes Δu and Δv in parameters, it’s a 
parallelogram with sides �r(u + Δu, v) − �r(u, v) ≈ (∂�r/∂u) Δu and (∂�r/∂v) Δv, so 

∂�r ∂�r ∂�r ∂�r
ΔS� = ± 

∂u 
Δu × 

∂v 
Δv , dS� = ± 

∂u 
× 

∂v 
du dv. 

(This generalizes all formulas previously seen; but won’t be needed on exam). 

Implicit surfaces: If we have an implicitly defined surface g(x, y, z) = 0, then we have a (non­
unit) normal vector N = �g. (similarly for a slanted plane, from equation ax + by + cz = d we get 
N = �a, b, c�). 

Unit normal n̂ = ±N/|N|; surface element ΔS = ? Look at projection to xy-plane: ΔA = 
ΔS cos α = (N · k̂/|N|) ΔS (where α = angle between slanted surface element and horizontal: 
projection shrinks one direction by factor cos α = (N · k̂)/|N|, preserves the other). 

Hence dS = 
|N| 

dA, and n̂ dS = 
|N|n̂

dx dy = ± 
N 

dx dy. 
N k̂ N k̂ N k̂· · ·


(In fact the first formula should be dS = 
|N| 

dA, I forgot the absolute value).

|N · k̂|

Note: if S is vertical then the denominator is zero, can’t project to xy-plane any more (but one 
could project e.g. to the xz-plane). 

Example: if S is a graph, g(x, y, z) = z − f(x, y) = 0, then N = �gx, gy, gz� = �−fx, −fy, 1�, 
N k̂ = 1, so we recover the formula dS� = �−fx, −fy, 1�dx dy seen before. · 

Divergence theorem. (“Gauss-Green theorem”) – 3D analogue of Green theorem for flux. 

If S is a closed surface bounding a region D, with normal pointing outwards, and F� vector field 
defined and differentiable over all of D, then �� ��� 

F� dS� = F dV, where div (Pˆ j + Rk̂) = Px + Qy + Rz.div � ı + Qˆ· 
S D 

Example: flux of F� = zk̂ out of sphere of radius a (seen Thursday): div F� = 0 + 0 + 1 = 1, so 
F� dS� = 3 vol(D) = 4πa3/3.S · 

Physical interpretation (mentioned very quickly and verbally only): div F� = source rate = 
flux generated per unit volume. So the divergence theorem says: the flux outwards through S (net 
amount leaving D per unit time) is equal to the total amount of sources in D. 


