MIT OpenCourseWare
http://ocw.mit.edu

18.02 Multivariable Calculus
Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu
http://ocw.mit.edu/terms

18.02 Lecture 26. — Tue, Nov 13, 2007

Spherical coordinates (p, ¢, 0).

p = rho = distance to origin. ¢ = ¢ = phi = angle down from z-axis. § = same as in cylindrical
coordinates. Diagram drawn in space, and picture of 2D slice by vertical plane with z, r coordinates.

Formulas to remember: z = pcos¢, r = psin¢ (so x = psinpcosf, y = psin psinb).

p =22 +y2+ 22 =/r2 4 22. The equation p = a defines the sphere of radius a centered at 0.

On the surface of the sphere, ¢ is similar to latitude, except it’s 0 at the north pole, /2 on the
equator, 7w at the south pole. 6 is similar to longitude.

¢ = 7/4 is a cone (asked using flash cards) (z =r = /22 + y2). ¢ = 7/2 is the xy-plane.
Volume element: dV = p?sin ¢ dp do db.

To understand this formula, first study surface area on sphere of radius a: picture shown of a
“rectangle” corresponding to A¢, Af, with sides = portion of circle of radius a, of length aA¢, and
portion of circle of radius r = asin ¢, of length rAf = asin pAfH. So AS ~ a®sin ¢ ApAf, which
gives the surface element dS = a? sin ¢ dod6.

The volume element follows: for a small “box”, AV = AS Ap, so dV = dpdS = p?sin ¢ dpdodo.

Example: recall the complicated example at end of Friday’s lecture (region sliced by a plane
inside unit sphere). After rotating coordinate system, the question becomes: volume of the portion
of unit sphere above the plane z = 1/v/2? (picture drawn). This can be set up in cylindrical (left
as exercise) or spherical coordinates.

For fixed ¢, 8 we are slicing our region by rays straight out of the origin; p ranges from its value
on the plane z = 1/4/2 to its value on the sphere p = 1. Spherical coordinate equation of the plane:
z=pcos¢ = 1/v/2, so p = sec ¢/v/2. The volume is:

2 /4 pl
/ / / p?sin ¢ dp do db.
0 0 %secd)

(Bound for ¢ explained by looking at a slice by vertical plane § = constant: the edge of the region

isat z=r= 1),

V2

2 5%
Evaluation: not done. Final answer: — — ——
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Application to gravitation.

Gravitational force exerted on mass m at origin by a mass AM at (z,y,2) (picture shown)

- GAM - - GAM

is given by |F| = 72771, dir(F) = M, ie. F = 73m<x,y,z>. (G = gravitational
p p p

constant).

If instead of a point mass we have a solid with density J, then we must integrate contributions
to gravitational attraction from small pieces AM = § AV. So

ﬁz///WédV, i.e. z-component is FZ:Gm/// %6dV,
R p RP

If we can set up to use symmetry, then F, can be computed nicely using spherical coordinates.

General setup: place the mass m at the origin (so integrand is as above), and place the solid
so that the z-axis is an axis of symmetry. Then F' = (0,0, F,) by symmetry, and we have only one



2
component to compute. Then

F,= Gm/// :35deGm/// pC;3S¢5PQSin¢dpd¢d9:Gm/// dcos¢sinpdpdpdl.
R R R

Example: Newton’s theorem: the gravitational attraction of a spherical planet with uniform
density J is the same as that of the equivalent point mass at its center.

[[Setup: the sphere has radius a and is centered on the positive z-axis, tangent to zy-plane at
the origin; the test mass is m at the origin. Then

2w /2 r2acos¢ 4 M
Fz:Gm/// %5dV:Gm / / dcos¢singdpdpdd =--- = -Gmdma = G 2m
RP o Jo Jo 3

a

where M = mass of the planet = %71’&3(5 . (The bounds for p and ¢ need to be explained carefully,
by drawing a diagram of a vertical slice with z and r coordinate axes, and the inscribed right
triangle with vertices the two poles of the sphere 4+ a point on its surface, the hypothenuse is the
diameter 2a and we get p = 2a cos ¢ for the spherical coordinate equation of the sphere).]]

18.02 Lecture 27. — Thu, Nov 15, 2007
Handouts: PS10 solutions, PS11

Vector fields in space.

At every point in space, F=Pi+ Q7+ RIQ:, where P, (), R are functions of x,y, z.

Examples: force fields (gravitational force F= —c(z,y, 2)/p3; electric field E, magnetic field B);
velocity fields (fluid flow, v = v(x,y, 2)); gradient fields (e.g. temperature and pressure gradients).

Flux.

Recall: in 2D, flux of a vector field F across a curve C' = fC F - nds.

In 3D, flux of a vector field is a double integral: flux through a surface, not a curve!

F vector field, S surface, 7 unit normal vector: Flux = [[ F-nds.

Notation: dS = ndS. (We'll see that dS is often easier to compute than 7 and dS).

Remark: there are 2 choices for n (choose which way is counted positively!)

Geometric interpretation of flux:
As in 2D, if F = velocity of a fluid flow, then flux = flow per unit time across S.

Cut S into small pieces, then over each small piece: what passes through AS in unit time is the
contents of a parallelepiped with base AS and third side given by F'.

Volume of box = base x height = (F - 7) AS.

e FExamples:
1) F=uxi+ Yy + 2k through sphere of radius a centered at 0.
7 = 1(z,y,z) (other choice: —%(x, y, z); traditionally choose i pointing out).

Fon=(z,y2) n=>1a>+y>+2?) =aq, 0 ffsﬁ-ﬁdS:ffSadS:a(élmﬂ).



) Same sphere, H=zk: H n=

2 T T
//H s = //dS / / a® cos® ¢ a®sin ¢ dpdo = 2ma® / cos2¢sin¢dd>:§7m3
0

Setup. Sometimes we have an easy geometric argument, but in general we must compute the
surface integral. The setup requires the use of two parameters to describe the surface, and F' -1 dS
must be expressed in terms of them. How to do this depends on the type of surface. For now,
formulas to remember:

0) plane z = a parallel to zy-plane: n = +k, dS = dz dy. (similarly for planes // xz or yz-plane).

1) sphere of radius a centered at origin: use ¢, 8 (substitute p = a for evaluation); n = %(x, Y, 2),
dS = a®sin ¢ d¢ db.

2) cylinder of radius a centered on z-axis: use z,6 (substitute r = a for evaluation): 7 is radially
out in horizontal directions away from z-axis, i.e. n = %(:p,y, 0); and dS = adzdf (explained by
drawing a picture of a “rectangular” piece of cylinder, AS = (Az) (aAf)).

3) graph z = f(x,y): use z,y (substitute z = f(x,y)). We'll see on Friday that n and dS
separately are complicated, but ndS = (—f,, — fy, 1) de dy.

18.02 Lecture 28. — Fri, Nov 16, 2007

Last time, we defined the flux of F through surface S as f f F-ndS , and saw how to set up in
various cases. Continue with more:

Flux through a graph. If S is the graph of some function z = f(x,y) over a region R of
xy-plane: use x and y as variables. Contribution of a small piece of S to flux integral?

Consider portion of S lying above a small rectangle Ax Ay in xy-plane. In linear approximation
it is a parallelogram. (picture shown)

The vertices are (z,y, f(z,y)); (z + Az,y, f(z + Az,y)); (z,y + Ay, f(z,y + Ay)); etc. Linear
approximation: f(z + Az,y) ~ f(z,y) + Az fo(z,y), and f(z,y + Ay) = f(z,y) + Ay fy(z,y).

So the sides of the parallelogram are (Az,0, Az f,) and (0, Ay, Ay f,), and

Ag: (Ax <1707f:v>> X (Ay <07 17fy>) = AJZ’Ay = <_f:£7 —fy7 1>A1‘Ay

O = &
— O~
;&. ?ﬁ -l

So dS = £(—fu, — f,, 1)dax dy.
o —Jxy T 71 3
(From this we can get n = dir(dS) = e 2l and dS = |dS| =/ f2 + f2 + 1dxdy. The
VA2 1+
conversion factor /- - - between dS and dA relates area on S to area of projection in zy-plane.)
e Example: flux of F = zk through S = portion of paraboloid z = z? 4+ 32 above unit disk,

oriented with normal pointing up (and into the paraboloid): geometrically flux should be > 0
(asked using flashcards). We have ndS = (—2z, —2y, 1) dz dy, and

//F ds = //zdmdy—//x—l—y d;vdy—/%/rrdrdﬂ—wﬂ

Parametric surfaces. If we can describe S by parametric equations = = z(u,v), y = y(u,v),
z = z(u,v) (i.e. ¥ = 7(u,v)), then we can set up flux integrals using variables u,v. To find dS,
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consider a small portion of surface corresponding to changes Au and Av in parameters, it’s a
parallelogram with sides 7(u + Aw, v) — #(u,v) =~ (07/Ju) Au and (07/0v) Av, so

- or or = or  or
AS ==+ ((%Au) X ((%Av) , S ==+ <6u X (%) dudv.

(This generalizes all formulas previously seen; but won’t be needed on exam).

Implicit surfaces: If we have an implicitly defined surface g(x,y, z) = 0, then we have a (non-
unit) normal vector N = Vg. (similarly for a slanted plane, from equation ax + by + cz = d we get
N = (a,b,c)).

Unit normal n = +N/|N|; surface element AS = 7 Look at projection to zy-plane: AA =
AScosa = (N - k/|N|)AS (where a = angle between slanted surface element and horizontal:
projection shrinks one direction by factor cosa = (N - k)/|N|, preserves the other).

N N7 N
Hence dS = 1 dA, and 72.dS = 0 dody — £+ drdy.
N-k N-k N-k
N
(In fact the first formula should be dS = N L;:’ dA, 1 forgot the absolute value).

Note: if S is vertical then the denominator is zero, can’t project to xy-plane any more (but one
could project e.g. to the zz-plane).

Example: if S is a graph, g(z,y,2) = z — f(z,y) = 0, then N = (94, 9y,92) = (—fz, —fy: 1),
N -k = 1, so we recover the formula dS = (—f,, — fy, 1)dx dy seen before.
Divergence theorem. (“Gauss-Green theorem”) — 3D analogue of Green theorem for flux.

If S is a closed surface bounding a region D, with normal pointing outwards, and F vector field
defined and differentiable over all of D, then

// F.dS = /// div FdV, where div(Pi+ Qj+ Rk) = P, + Q, + R..
S D

Example: flux of F' = zk out of sphere of radius a (seen Thursday): div F=040+1=1,5s0
[[sF - dS = 3vol(D) = 4ma®/3.

Physical interpretation (mentioned very quickly and verbally only): div F = source rate =
flux generated per unit volume. So the divergence theorem says: the flux outwards through S (net
amount leaving D per unit time) is equal to the total amount of sources in D.



