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18.02 Lecture 24. — Tue, Nov 6, 2007

Simply connected regions. [slightly different from the actual notations used|

Recall Green’s theorem: if C'is a closed curve around R counterclockwise then line integrals can
be expressed as double integrals:

?fﬁ-df:// curl(F) dA, ?{ﬁ.ﬁdSZ// div(F) dA,
C R C R

where curl(Mi + Nj) = N, — My, div(Pi + Qj) = P, + Q.
For Green’s theorem to hold, F must be defined on the entire region R enclosed by C.

Example: (same as in pset): F = y22++ 320‘7, C' = unit circle counterclockwise, then curl(F) =
€z Y
0 0o, —
< i ) =---=0. So, if we look at both sides of Green’s theorem:

T R TR

%ﬁ-d?z%r (from pset), // curlﬁdAz//OdAzO?
C R R

The problem is that R includes 0, where F is not defined.

Definition: a region R in the plane is simply connected if, given any closed curve in R, its interior
region is entirely contained in R.

Examples shown.

So: Green’s theorem applies safely when the domain in which F' is defined and differentiable is

simply connected: then we automatically know that, if F is defined on C , then it’s also defined in
the region bounded by C.

In the above example, can’t apply Green to the unit circle, because the domain of definition
of F is not simply connected. Still, we can apply Green’s theorem to an annulus (picture shown
of a curve ¢’ =unit circle counterclockwise + segment along z-axis + small circle around origin
clockwise + back to the unit circle allong the z-axis, enclosing an annulus R’). Then Green applies
and says fC' F.dr = [f g 0dA = 0; but line integral simplifies to fC’ = fc — fCQ, where C' = unit
circle, Co = small circle / origin; so line integral is actually the same on C' and Cy (or any other
curve encircling the origin).

Review for Exam 3.

2 main objects: double integrals and line integrals. Must know how to set up and evaluate.

Double integrals: drawing picture of region, taking slices to set up the iterated integral.

Also in polar coordinates, with dA = rdr df (see e.g. Problem 2; not done)
Remember: mass, centroid, moment of inertia.
For evaluation, need to know: usual basic integrals (e.g. [ df); integration by substitution (e.g.
1 2
tdt du
/ — = F, setting v = 1 4 t?). Don’t need to know: complicated trigonometric
0 u

14 ¢2 1
integrals (e.g. [ cos*0 df), integration by parts.

Change of variables: recall method:

O(u,v)

1) Jacobian: =

Az, y)

2) express integrand in terms of u, v.

Up Uy

. Its absolute value gives ratio between du dv and dx dy.

Cx Uy



3) set up bounds in uv-coordinates by drawing picture. The actual example on the test will be
reasonably simple (constant bounds, or circle in uv-coords).

Line integrals: [, F.di = fcﬁ -Tds = Jo M dxz 4+ N dy. To evaluate, express both z,y in
terms of a single parameter and substitute.

Special case: gradient fields. Recall: F' is conservative < i F - dF is path independent < F is
the gradient of some potential f < curl F = 0 (i.e. N, = M,).

If this is the case, then we can look for a potential using one of the two methods (antiderivatives,
or line integral); and we can then use the FTC to avoid calculating the line integral. (cf. Problem 3).

Flux: [, F-fds (= Jo —Qdx + P dy). Geometric interpretation.

Green’s theorem (in both forms) (already written at beginning of lecture).

18.02 Lecture 25. — Fri, Nov 9, 2007

Handouts: Exam 3 solutions.

Triple integrals: / / fdV (dV = volume element).
R

Example 1: region between paraboloids 2z = + y and z = 4 — 22 — y? (picture drawn), e.g.

4—x?—
volume of this region: // / 1dV = / / / dz dy dx.
22492

To set up bounds, (1) for fixed (z,y) find bounds for z: here lower limit is z = 2242, upper limit
is z = 4— 22 —y?; (2) find the shadow of R onto the zy-plane, i.e. set of values of (z,y) above which
region lies. Here: R is widest at intersection of paraboloids, which is in plane z = 2; general method:
for which (x,%) is z on top surface > z on bottom surface? Answer: when 4 — 22 — y? > 22 — 32,
i.e. 22 4+ 4% < 2. So we integrate over a disk of radius v/2 in the zy-plane. By usual method to set

up double integrals, we finally get:
4—z2—
/ / / dz dydz.
2492

Evaluation would be easier if we used polar coordinates x = rcos#, y = rsinf, 22 + 2 = r2: then
2 V2 pd-r?
= / / / dzrdrdf.
0 0 r2

Cylindrical coordinates. (r,6,z), x = rcosf, y = rsinf. r measures distance from z-axis, 6
measures angle from zz-plane (picture shown).

(evaluation easy, not done).

Cylinder of radius a centered on z-axis is r = a (drawn); § = 0 is a vertical half-plane (not
drawn).

Volume element: in rect. coords., dV = dx dy dz; in cylindrical coords., dV = rdr df dz. In both
cases this is justified by considering a small box with height Az and base area AA, then volume is
AV = AAAz.

Applications: Mass: M = fffR5dV.



_ 1 - 1
Average value of f over R: f = Vol // fdV; weighted average: f = Vass // fédv.
R R

1
s [ v

(Note: can sometimes avoid calculation using symmetry, e.g. in above example z = 3§ = 0).

In particular, center of mass: (z,y, zZ) where & =

Moment of inertia around an axis: I = / / / (distance from axis)? 5 dV.

R
About z-axis: I, = /// r25dV = /// (22 +y*) 8 dV. (consistent with Iy in 2D case)
R R
Similarly, about x and y axes: I, = /// (y2 +2%)6dV, I, = /// (2% + 22)6dV
R R

(setting z = 0, this is consistent with previous definitions of I, and I, for plane regions).

Example 2: moment of inertia I, of solid cone between z = ar and z = b (§ = 1) (picture drawn):

b r2r pz/a 5
—/// rde—/ / / r2rdrdfdz <— . )
R o Jo Jo 10at

(I explained how to find bounds in order dr df dz: first we fix z, then slice for given z is the disk
bounded by r = z/a; the first slice is z = 0, the last one is z = b).

Example 3: volume of region where z > 1 —y and 2% 4+ y? + 22 < 1? Pictures drawn: in space,
slice by yz-plane, and projection to xy-plane.

The bottom surface is the plane z = 1 — y, the upper one is the sphere z = /1 — 22 — 2. So

\/1—z2—y?
inner is / dz. The shadow on the zy-plane = points where 1 —y < /1 — 22 — 92, i.e.
1-y

squaring both sides, (1 — )2 <1 — 22 —y? ie. 22 < 2y — —/2y — 22 <z < /2y — 292,

So we get:
\/Qy 292 \/1 x2—92
/ / / dz dz dy.
2y 212

Bounds for y: either by observing that z? < 2y — 32 has solutions iff 2y — y? > 0, i.e. 0 < y < 1,
or by looking at picture where clearly leftmost point is on z-axis (y = 0) and rightmost point is at

y = 1.




