An Alternate Solution
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Figure 1: The area of the shaded region is / Va2 —x?dx.
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As Professor Miller explained in lecture, the area of the region shown in

b
Figure 1 is / va? —x?2dx. Use the substitution x = acosf to solve this

0
integral. Hint: pay particular attention to your limits of integration.

Solution

In lecture, Professor Miller drew this picture in such a way that it was more
natural to substitute asin @ rather than acos. In this problem we verify that
the two methods of finding the area yield the same result.

Notice that when x = 0, § = 7/2 (assuming we’re using polar coordinates).
When z = b, 6 = arccos(2) < 7/2. As z increases, 6 decreases. Although it’s
not strictly necessary, in the solution presented here we reverse the limits of
integration to ensure that 6 is increasing over the interval.
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As Professor Miller noted, the identity sin(2t) = 2sintcost is helpful at this
stage.
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We need to understand arccos(g) in order to further simplify this result. To
do so, we can draw a diagonal line through the shaded region in Figure 1 to
form a right triangle in which an leg of length b meets a hypotenuse of length
a at an angle t. Then cost = 3 ort= arccos(g). Using this diagram and the
b)) — Va?-b?
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Pythagorean theorem, we conclude that sin(arccos( and so:
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When Professor Miller did this calculation by substituting a sin 6, he got the
2
result fob Va2 —y?dy = % + bi”lz_lﬁ. We can check our work by noting that

our 5 —t is equal to Professor Miller’s .

Alternately, we could note that the area of the largest circular sector con-
tained in the shaded region is gaQ — %aQ, and the area of the remaining portion

of the shaded region is 1bv/a? — b2.
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