The Mean Value Theorem and Estimation

The following problem appeared on the second exam:
Given that F'(r) = - and F(0) = 1, the mean value theorem implies that
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A < F(4) < B for which A and B?
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Figure 1: Graph of F'(z) = H%

To solve this, we first apply the mean value theorem in such a way that the
value F'(4) appears, then use our knowledge of the formula for F'(c) to find
limits on that value. Remember that ¢ is an unknown value between (in this

case) 0 and 4.

F(4) -~ F(0) = F'(c)(4—0) (Usethe MVT on F(4))
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We don’t know what %ﬁ is, but we know that % decreases from 0 to infinity,
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We conclude that:
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4> F(4) - F(0) >
and since F'(0) = 1 we have:
5> F(4) > %

Our final answer is A = g and B = 5.



Now let’s compare this to what we can do with the fundamental theorem of

calculus:
dzx
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F(4) — F(0) = /04

Based on what we know about the graph of y = % and the area under it, we

can deduce that:
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F(4) — F(0) = < ldx =4
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F(4)—F(0):/0 do >/0 %dng.

and that
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So once again we have:

4
5 < F(4)—-F(0) < 4.
Geometrically, we interpret f04 ﬂ—“; as the area under a curve. We got an

upper bound on the area by comparing it to the area of a rectangle whose

height was the maximum value of 14—% on the interval, and got a lower bound
1

by comparing to a rectangle whose hight was the minimum of 1 on [0, 4].
dx

We could think of this as estimating f04 115 Py comparing it to two different
Riemann sums, each with only one rectangle.

: Y oda .
lower Riemann sum < ﬁ < upper Riemann sum
0 1‘



MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus[]
Fall 2010 O

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu
http://ocw.mit.edu/terms

