
Month Balance ($) 
January 
February 
March 
. . . 

175 
220 
255 

. . . 

Checking Account Balances 

The derivative of a function f(t) describes how the function’s output changes 
as the value of t changes. 

Suppose that a checking account has balance f(t) = −5t2 + 60t + 120 dollars 
t months into the year, and that the derivative (rate of change) of the account 
balance is given by f �(t) = −10t + 60. 

1. Compute f �(1). If f �(1) is approximately equal to the rate of change of the 
account balance during the month of January, will the account balance in 
February be greater or less than the balance in January? 

2. Compute f �(10). Does the account balance continue to increase through­
out the year? How do you know? 

3. During which month is the account balance greatest? What is the value 
of f �(t) at this time? 

Solution 

1. Compute f �(1). If f �(1) is approximately equal to the rate of change of the 
account balance during the month of January, will the account balance in 
February be greater or less than the balance in January? 

f �(1) = −10(1) + 60 

= 50dollars per month 

In January, the account balance is changing by a positive $50 per month. 
The account balance in February should be roughly $50 greater than the 
January balance. We can see from the table of values of f(t) that this is 
a reasonable answer, and also that the approximation is not exact. 

2. Compute f �(10). Does the account balance continue to increase through­
out the year? How do you know? 

f �(10) = −10 10 + 60 · 
= −40dollars per month 
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We expect the account balance to be decreasing by approximately $40/month 
in October; the account balance will not continue to increase throughout 
the year. We can check this answer by confirming that f(11) = $175 is 
approximately $40 less than f(10) = $220. 

The value of f �(10) describes the instantaneous rate of change of f(t) when 
the time elapsed is exactly t = 10 months and corresponds to the slope of 
the line tangent to the graph of f(t) at the point (10, 220). The difference 
f(10)−f(11) is the average rate of change between time t = 10 and t = 11 
and corresponds to the slope of a secant line of the graph of f(t). 

3. During which month is the account balance greatest? What is the value 
of f �(t) at this time? 

We could answer the first part of this problem by calculating balances for 
the remaining six months of the year, but that’s somewhat tedious and 
unenlightening. Instead, we observe that the account balance is increasing 
when f �(t) > 0 and decreasing when f �(t) < 0. By graphing the equation 
y = f �(t) we find that the account balance should increase until month 6 
(June) and then decrease thereafter. 

More experienced problem solvers might observe that f �(t) is a continuous 
function that is always decreasing and find the point where f(t) chanes 
from increaseing to decreasing by solving the equation f �(t) = 0: 

f �(t) = 0 

−10t + 60 = 0 

−10t = −60 
−10t −60 

= −10 −10 
t = 6 

The account balance is expected to be greatest in June, at which time: 

f �(t) = f �(6) = −10(6) + 60 = 0. 

To check our work, we compute that f(6) = 300, f(5) = 295, and f(7) = 
295. Our answer does seem to be correct. 
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