Example: Reciprocals
Let’s use the quotient rule in a simple example. The quotient rule tells us that:

du dv
4 (E) il v
dx \v V2

In this example u will be 1, so we’ll be finding the derivative of 1, the
reciprocal of v.
a1y,
dx \v

We're going to use the formula above. We know w = 1 and v = v, so we still
need to find % and g—; before we can apply the formula.
The derivative of a constant (like 1) is zero, so 4% = 0. We don’t know what

dr
v is, so we’ll just write % = v'. Plugging all this in to the quotient rule formula
we get:
d (1 01
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Now we have a general formula that lets us differentiate reciprocals! Next,
let’s use this formula to see what happens when v = 1 and v = z™. Here again

Z—Z =0 and now v’ = d%x” =na” L
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But :%n = 27", which is x to a power. We have a rule for taking the

derivative of x to a positive power; how does that compare to our new rule for
the derivative of x to a negative power?

d

— g —n—1
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== —nx

This agrees with the formula %x" = nz"" !, so the quotient rule confirms that
our rule for taking the derivative of ™ works even when n is negative.
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