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PROFESSOR: Now, today I need to get started by finishing up what I did last time. Namely, talking about

numerical methods. And I want to just carry out one example. And then I want to fill in one

loose end. And then we'll talk about the unit overall. We were talking, last time, about

numerical integration. I'm going to illustrate this just with the simplest example that I can.

We're going to look at the integral from 1 to 2 of dx / x. Which we know perfectly well already is

the log of x evaluated between 1 and 2, which is ln 2 - ln 1. Which is just ln 2. Now, if you

punch that into your calculator, you're going to get something like this. I hope I saved it here.

Yeah. It's about 0.693147. That's more digits than we're going to get in our discussion here.

Anyway, that's about how big this number is.

And the numerical integration methods will give you about as much accuracy as you can get

on the function itself. And, of course, some functions we may have more trouble

approximating. But the function 1 / x, we know pretty well how to do, because we know how to

divide. So since the function that we're integrating here is 1 / x, it's going to be not too difficult

to get some arithmetic. Nevertheless, I'm going to do this in the simplest possible case.

Namely, just with two intervals.

Now, you really can't expect things to work so well with two intervals. That's a pretty ridiculous

approximation to your function. When you have two intervals, that means you're looking at the

graph of this hyperbola. And you have 1 here, and you have 2 here and you have 3/2. And

you're really only keeping track of the values at these three spots. So the idea that you can

approximate the area just by knowing the values of three places is a little bit of a stretch of the

imagination. But we're going to try it anyway. Now, the trapezoidal rule is the following formula.

It's delta x (1/2 the first value + the second value + 1/2 the third value). In this case, the pattern

is 1/2, 1, 1, 1, 1, 1, 1/2. And in this case, delta x = 1/2 because this interval's of length 1. The b

- a, right. Let's just point that out here. Here, b = 2. a = 1. b - a = 1. And the number n is 2. And

so, delta x, which is (b - a) / n, is 1/2.

So here's what we get. And let's just see what this number is. It's 1/2 of the value at here. Well,



so let's just check what these values are. This value is 1, this value over here is 2/3, and the

last value is 1/2. Because the function, of course, was y = 1 / x. And those were the three

values that we have. So y_0, this one is y_0, this one is y_1, and this one is y_2. Now, here we

have 1/2* 1 + 2/3 + 1/2 * 1/2. Now, on an exam, I don't expect you to add up long messes of

numbers like this. When you have two numbers, I expect you to add them up if they're

reasonable, or subtract them. Just as we do when we take antiderivatives. Like, for example, I

don't want you to leave the answer to an integration like this in this form. I want you to simplify

it at least down to here. And I of course don't expect you to know the numerical approximation.

But I certainly expect you to be able to do that. On the other hand, when the arithmetic gets a

little bit long, you can relax a little bit. But I did carry this out on my calculator. Unless I'm

mistaken, it's about 0.96. It's pretty far off.

So remember what it was. It's what you get when you get these straight lines. And there are

these little extra pieces of junk there. Now, don't trust that too much, but the point is that it's far

off. So now, let's take a look at Simpson's Rule. And I claim that Simpson's Rule is surprisingly

accurate. In this case, really, even a little more than it deserves to be. The formula is (delta x /

3) (y_0 + 4 y_1 + y_2). So the pattern is 1, 4, 1, or 1, 4 and then it alternates 2's and 4's until

4, 1 at the very end. And if I just plug in the numbers now, what I get is 1/6, because delta x =

1/2 again. And the value for y_0 was 1. And the value for y_1 was 2/3. And the value for y_2

was 1/2. So here's the estimate in this case. And this one I did carry out carefully. And it came

out to 0.69444. Which is actually pretty impressive, if you think about it. Given what the

logarithm is.

Now, what's going on with Simpson's Rule in general is this. If you-- Simpson's minus the

exact answer, in absolute value, is approximately of the size of (delta x)^4. That's really the

way it behaves. Which means that if delta x is about 1/10, so if we had divided this up into 10

intervals, which we didn't, but if we'd divided it up into 10 intervals, then you could expect that

delta x-- the error would be about 10^(-4). In other words, four digits of accuracy here for this

thing. But the exact analysis of this, a more careful analysis of this, is in your textbook. And I'm

not going to do it. But I just want to point out that it is an effective method. It really does give

you nice four-digit with manageable-- you could even really do it by hand. It's so convenient,

the Simpson's Rule. Whereas the other rules aren't really that impressive as far as giving fairly

accurate answers.

The last little remark to make is that the reason is that Simpson's Rule is matching a parabola.



And somehow the parabola follows this curve better. It's giving the exact answer. So I'll

mention this. Simpson's Rule is derived using the exact answer for all degree 2 polynomials. In

other words, parabolas. All parabolas. But even all the ones of lower degree. So straight lines

would work, and constants would work as well. Whereas the other ones only work for, say,

straight lines. The trapezoidal rule only works for straight lines. But there is a weird accident. It

turns out that it also works for cubics. Once you get the formulas, it works for cubics. So it's

also exact for cubics. And that's what explains the fourth order validity. The last thing that I

want to point out is that this is extremely vague, what I said there. And you should be a little bit

cautious about it. You need to watch out for 1/x for x near 0. All bets are off if the function is

singular. And there's a lot of area under there. And it's also true that if the derivative messes

up, you're in trouble too. You really need for the function to be nice and smooth in order for

Simpson's Rule to work. This is wath out. That's a real wath out, but we'll try to-- Watch out.

Watch out for whenever x near 0. Then this thing doesn't work. This thing really depends on

bounds on derivatives. But I'm going to be relatively vague about that. I'm not attempting to

give you an error analysis here.

OK, so if you were doing this on an exam, how do you remember this strange pattern of

numbers? The one thing that I want to recommend to you is, as a way of remembering it, so

the one mnemonic device, we'll call it a mnemonic device here, for remembering what it is that

you're doing, is to remind yourself of what happens for the simplest possible case. Which is

f(x) = 1. It seems very modest, but if it doesn't give you the exact answer for f(x) = 1, you've

got the wrong weightings. And here, if you check out what happens in the first formula here,

y_0 / 2 + y_1 +..., well, we'll go all the way to y_(n-1) + y_n / 2. If you check that formula out

here, this is the trapezoidal rule. If you check it out for this case, then what you get is that this

is equal to delta x times what? Well, all of these are 1's. And how many are there in the

middle? There are n - 1 of them in the middle. So it's 1/2 + n - 1 + 1/2. At the tail end. So all

told it's delta x n. And I remind you that delta x = b - a / n. So, delta x, this thing, is equal to b -

a. And that's just as it should be. What we just calculated is an approximation to this integral

here. Which is just the area of the rectangle of base b - a and height 1. Which of course is b -

a.

So this is the check that you got your weighted average correct here. You've put the correct

weightings on everything. And you can do this same thing with Simpson's Rule. And match up

those quantities. There was a question in the room at some point. No, OK.



So now, the next thing I want to do for you is the loose end which I left hanging. Namely, I

want to compute that mysterious constant square root of pi / 2. This is really one of the most

famous computations in calculus. And it's a very, very clever trick. I certainly don't expect you

to come up with this trick. I certainly wouldn't have myself. But it's an important thing to

calculate. And it's just very useful. So I'm going to tell you about it. And it's just on the subject

that we're dealing with in this unit; namely, slicing. Or adding up.

So the first step, which is just something that we already did, was that we found the volume

under this curve. This bell-shaped curve, e^(-r^2). But rotated around an axis. Rotated around

this axis. Around this way. So we figured that out. And that was a relatively short computation.

I'm just going to remind you, it goes by shells. We integrate the whole range from 0 to infinity.

And we have 2 pi r 2 pi r e^(-r^2) dr. So this again is the circumference of the shell. This is the

height of the shell, and this is the thickness of the shell. Circumference, height, thickness. So

we're just taking a little piece here and sweeping it around. And then adding up. And then this

antiderivative is pi-- -pi e^(-r^2), evaluated at 0 and infinity. And we worked this out last time.

This is pi. It's pi (1 - 0). Which is pi.

So the conclusion is that V = pi. We already know that. Now, the problem that we want to deal

with now is the problem not of a volume, but an area. And this looks quite different. And of

course the answer is going to be different. But let's do it. So this is this question mark here.

And I'm going to do the one from minus infinity to infinity. And I'll relate it to what we talked

about earlier in this unit, in just a couple of minutes when I show you the procedure that we're

going to follow. So here's the quantity and now, what this is interpreted as is the area under

this bell curve. This time, Q is really an area.

Now, what's going to turn out to happen, is this. This is the trick. We're going to compute V in a

different way. And you'll see it laid out in just a second. We will compute V by slices. We're

going to slice it like a piece of bread here. We're going to solve for that same thing here. And

then, amazingly, what's going to happen is that we will discover that V = Q^2. That's going to

be what's going to come out. And that's the end of the computation that we want. Because

actually we already know what V is. We don't want to read this equation forward. We want to

read it the other way. We want to say Q^2 = V, which we already know is pi. And so Q is equal

to the square root of pi.

I haven't shown this yet, this is the weird part. And I'm going to put it in a little box so that we

know that this is what we need to check. We need to check this fact here. We haven't done



that yet. Now, let me connect this with what we did a few days ago. With what I called one of

the important functions of mathematics besides the ones you already know. And so the

function that we were faced with, and that we discussed, was this one. And then, we were

interested in the value at infinity. We were interested in this. Which, if you draw a picture of it,

and you draw the same bell curve, that's the area under half. of it. That's the area starting

from 0 and going to infinity. That's the area under half. So this chunk is F of infinity.

And now I hope that this part of the connection is not meant to be fancy. The idea here is that

Q = 2 F(infinity). This number here. And so F F(infinity) is equal to the square root of pi over 2,

if we believe what we said on the last panel. And that was the thing that I drew a picture of on

the board. Namely, the graph of F looked like this. And there was this asymptote, which was

the limit F(x) tends to square root of pi over 2, as x goes to infinity. That was that limiting

value. Which is F of infinity. So this is the asymptote. And now I've explained the connection

between what we claimed before, which was quite mysterious, and what we're actually going

to be able to check now. Concretely, by making this computation.

So how in the world can you get something like this. What's in that orange box there, that V =

Q^2. Again, the technique is to use slices here. And I'm going to have to draw you a 3-D

picture to visualize the slice. Let's do that. I'm going to draw three axes now, because we're

now going to be in three-dimensional space, and I want you to imagine the x-axis as coming

out of the blackboard, the y-axis is horizontal, and there's a new axis, which I'll call the z-axis,

which is going up. So what's happening here is that I'm thinking of this-- This is, if you like,

some kind of side view. And this is a view where I've tilted things a little bit up to the top. Now,

the distribution, or you could think of this target in the plane, where the most likely places to hit

were in the middle and it died off. As we went down. Now, I want to draw a picture of this

graph. I'm going to draw a picture of e^(-r^2). And it's basically a hump. So I'm going to take

the first-- the slice along y = 0. The y = 0 slice. And I claim that that goes up like this. And then

comes back down. Let me shade this in, so that you can see what kind of a slice this is. This is

supposed to be along this vertical plane here. Which is coming out of the blackboard and

coming towards you. And that's a slice.

Now, I'm going to draw one more slice so that you can see what's happening. I'm going to

draw a slice at another place. Along here. This will be y = b. Some other level. And now I'm

going to show you what happens. What happens is that the hump dies down a little bit. So the

bump is just a little bit lower. And it's going to look a little bit the same way. But it's just going to



be a bit smaller. So there's another slice here. Like that. And I want to give a name to these

slices. I'm going to call this A(b). That is, the area of the b slice. Under the surface. OK? Yes,

question.

STUDENT: [INAUDIBLE]

PROFESSOR: Yeah, the solid. Yeah. We're trying to figure out this volume here, which is the one we started

out with, by slices. So first I have to think of-- I'm going to visualize-- So here I didn't even

visualize. I took a cross section and I thought about how to spin it around without actually

doing that in three-dimensional space. But now I'm going to take a different kind of slice. I'm

going to take that same bump, which is a three-dimensional object. I'm going to lay it down on

a plane. Which looks like this. And then it's a bump here. It's a hump. And now I'm going to try

to slice it by various planes.

STUDENT: [INAUDIBLE]

PROFESSOR: So one way of defining the bump, as you just suggested, is you take this curve and you rotate

it around this z-axis. So in other words, you make this the axis of rotation, you spin it around.

That's correct. So that shows you that the peaks as you go down here are going to descend

the same way. But I don't want to draw those lines. I want to imagine what the parallel slices

are. Because I don't want to get cross slices. I want all slices parallel to the same thing.

STUDENT: [INAUDIBLE]

PROFESSOR: OK. This is not particularly easy to visualize. Now, here's the formula for volume by slices. The

formula for volume by slices is that you add up the areas of the slices. That's how you do it.

You take each slice. You add the cross-sectional area, and then you take a little thickness, dy,

and then you add all of them up. Because this is extending over the whole plane, we're going

to have to go all the way from minus infinity to plus infinity. And this is the formula for volumes

by slicing. And now our goal, in order to do this calculation, we're going to just fix y is equal to

some b. We're just going to fix one of these slices. And we're going to calculate A(b). That's

what we need to do in order to make this procedure succeed.

This is the only place where this method works. But it's an important one. In order to make it

work, I'm going to have to again draw the plot from a different point of view. I'm going to do the

top view. So I want to look down on this x-y plane here. This is the x-direction, and here's the

y-direction. And then again I want to draw my slice. My slice is here. At y = b. So we're just



right on top of it. And it's coming up at some kind of bump. Here, with a little higher in the

middle and going down on the sides. Now, the formula for the height is this. If I take a distance

r here, the formula for the height of the bump is e^(-r^2). I'll store that over here. e^(-r^2) is

the height at this place. If this distance to the origin is r. That's true all the way around. And in

terms of b and x, we can figure out that by this right triangle. This height is b, and this distance

is x. So r^2 = b^2 + x^2. Question.

STUDENT: [INAUDIBLE]

PROFESSOR: The question is, is that the x-y plane. So the answer is that over here I cleverly used the letter

r. I avoided using y's and z's or anything. And over here, this is the distance r. And you like,

this is z, going up. That's the way to think of it. So that all of the letters are consistent. So I just

avoided giving it a name. That's good, that's exactly the point. Alright. So now, I claim I have a

formula for r^2. And so I can write this down. This e^(-b^2 + x^2). But now I'm going to use the

rule of exponents. Which is that this is the same as e^(-b^2) times e^(-x^2). And that's going to

be the main way in which we use the particular function that we're dealing with here. That's

really the main step, amazingly. So now I get to compute what A(b) is.

A(b) is the area under a curve. So it's going to be, let me write it over here, A(b) is the area

under this curve here. Which is some constant times-- so if you imagine, call this thing the

name c. Under some curve, ce^(-x^2). Where the c is equal to e^(-b^2). That's what our slice

is. In fact, it looks like one of those. It looks like one of those bumps. Here's its formula again.

It's the integral from minus infinity to infinity of e^(-b^2) e^(-x^2) dx. We just recopied what I

had up there. And this is the height at each value of x, with b fixed. And now, so we have a lot

of steps here. But each of them is very elementary. The first one was just that law of

exponents. That we could split the two into products. Now I'm going to make that splitting even

further. This is a constant. It's not varying with x. So I'm going to factor it out of the integral.

This is e^(-b^2) times the integral from minus infinity to infinity of e^(-x^2) dx. So this might

look frightening, but actually it's just the property of an integral. All integrals have this kind of

property. You can always factor out a constant.

And now here comes the remarkable thing. This is e^(-b^2) times a number which is now

familiar to us. What is this number? This is what we're looking for. This is our unknown, Q. So

I've computed A(b), and now I'm ready to finish the problem off. A(b) = e^(-b^2) Q. Q is that

strange number which we don't know yet. What it is. So now I'm going to compute the whole

volume. The whole volume, remember, it's over there, it's minus infinity to infinity, A(y) dy. And



now I'm just going to plug in the formula that we've found for A. Now I'm doing this for each b,

so I'm doing it varying over all b's. So I have the integral from minus infinity to infinity. And here

I have e^(-y^2). I've replaced b by y. And now I have Q. And I have dy. I just recopied what I

had over there into the formula for slicing. And now, I'm going to do this trick of factoring out

the constant a second time.

This is a constant. It doesn't depend on y. It's the same for all y, it just will factor out. So this is

the same as Q times the integral from minus infinity to infinity, e^(-y^2) dy. And now, lo and

behold, this expression here. Of course, notice how I defined Q. Let's go back carefully to

where Q is defined. Here's Q. This t is a dummy variable. It doesn't matter what I call it. I can

call it x, I can call it u, I can call it v. In this case, I've given it two different names. At this stage,

I called it x. And at this stage I'm calling it y. But it's the same variable. And so this little chunk

is Q and altogether I have two of them, for Q^2 being the total. And that's the end of the

argument. It's a real miracle.

STUDENT: [INAUDIBLE]

PROFESSOR: Great question. The question is, wait a minute. As y changes, doesn't x change. And so then

this wouldn't be a constant. So that's the way in which we've used the letters x and y in this

whole course. When you get to 18.02, you'll almost never do that. Always y and x will be

different variables. And they won't have to depend on each other. Now, let me show you

where on this picture the x and the y are. We've got a whole x-y plane, and here I'm fixing y =

b, y isn't varying. Whereas x is changing. So, in other words, I don't have a relationship

between x and y, unless I fix it. In this case I've decided that y is going to be constant. For all

x. Over here, I made a computation. And I have a Q, which is just a single number. No matter

which b I took, it didn't matter which. No matter which y equals b. Of course, I changed the

name to b so it wouldn't be so jarring to you. But in fact this b was y all along. It's just that the x

varied completely independently of the y. I could fix the y and vary the x, I could fix the x and

vary the y. So it's a different use of the letters. From what you're used to. It happens that y is

not a function of x. In this case. Yes.

STUDENT: [INAUDIBLE]

PROFESSOR: Yes.

STUDENT: [INAUDIBLE]



PROFESSOR: The question is, because I'm rotating around the z-axis, doesn't x change exactly as much as

y does. What happens is that x and y are symmetric variables. They can be treated equally.

But if I decide to take slices with respect to y being fixed and x varying, then of course they're

now separated, and I have a separate role for the x and a separate role for the y. Or if I'd

sliced it the other way, I would have gotten the same answer. I just would have reversed the

roles of x and y. So what's happening is that x and y are on equal footing with each other in

this picture, and I could've sliced the other way. I would have gotten the same answer. That's

more or less the answer to your question. OK.

Now I have given you a review sheet, and I want to run through, briefly, what's going to be on

the exam. And this list of exam questions is what's going to be on the exam. There are, sorry

this is not displayed correctly. So, exam questions, but now I'm just going to show you what

they are. There are five questions on the exam. They are completely parallel to what you got

last year. So you should look at that test. It's worth looking at. And you'll see in the descriptions

on this sheet that what I'm describing is what's on that test. So what's going to happen is - and

this is also posted on the Web - is that you'll be expected to calculate some definite integrals

using the fundamental theorem of calculus. Do a numerical approximation. There'll be a

Riemann, a trapezoidal rule and a Simpson's Rule. Calculate areas and volumes. And then

some other cumulative sum. Either an average value or probability or perhaps work. And

sketch a function which is given in this form as an integral. So those are the questions, and

you'll see by the example of last year's exam exactly the style. They're really going to be very

similar. Yes, question.

STUDENT: [INAUDIBLE]

PROFESSOR: OK, good question. So the question is, for Riemann sums, what's the difference between

upper and lower, and right and left? So here we have a Riemann sum. And I'm going to give

you a picture which is, maybe this function y = 1 / x, which was the one that we were

discussing earlier. If you take the function y = 1 / x and you break it up into pieces here,

however it doesn't matter how many pieces, let's just say there are four of them. Then the

lower Riemann sum is the staircase which fits underneath. So this one is a picture of the lower

sum. It's always less. And in the case of a decreasing function, it's going to be, so since if you

like, since 1 / x decreases, the lower sum equals the right sum. You can see that visually on

this picture. The values you're going to select are going to be the right ends of the rectangles.

The upper sum is the left one. Now, if the function wiggles up and down, then you have to pick



whichever side is appropriate. Or maybe it'll be a point in the middle, if the maximum is

achieved in the middle. Yeah, another question.

STUDENT: [INAUDIBLE]

PROFESSOR: Correct. If the function is increasing, then the lower sum is the left sum. So it just exactly

reverses what's here. So this is decreasing, lower sum is right-hand sum. Increasing, lower

sum is left-hand sum.

STUDENT: [INAUDIBLE]

PROFESSOR: Yes.

STUDENT: [INAUDIBLE]

PROFESSOR: Good question. Suppose you're faced with a function like this in this last problem. Which,

generally, these are the trickiest problems. And the question is, how are you ever going to be

able to decide on an asymptote, even whether there is an asymptote. And the answer is,

you're not. It's going to be pretty tricky to get keep track of what's happening as it goes to

infinity. We had an example on the homework where is was oscillating and it's very unclear

what's going on. You have to do a very long analysis for that. So in fact, just don't worry about

that now. At the very end of the class, we'll talk a little bit about these asymptotes. And really,

the first issue is whether they exist or not. And that's even something. That's a serious

question which we'll address at the very end of this course.

STUDENT: [INAUDIBLE]

PROFESSOR: That's right. It's not going to be anything that complicated. Other questions? We we still have a

five whole minutes, and I have an example to give, if nobody has a question. Yeah.

STUDENT: [INAUDIBLE]

PROFESSOR: The question, uh, will I tell you which one of what to use?

STUDENT: [INAUDIBLE] PROFESSOR: When I tell you the numeric approximation is, you'll see on the

exam. The practice exam that you have. I will ask you for all three. I will ask you for the

Riemann sum, the trapezoidal rule, and the Simpson's rule. I'm guaranteeing you they'll all

three be on the exam. I'm guaranteeing that every single thing which is on that piece of paper

is on the exam. And you'll see it on the exam that you've got. It's exactly parallel to what's



there.

STUDENT: [INAUDIBLE]

PROFESSOR: So with areas and volume, the question is will I tell you which method to use. So let's discuss

that.

So with areas and volumes, there's basically-- So this is always true with areas. And it's true

with volumes of revolution. By the way you should read this sheet. Not everything that's on

here have I said. But you should read it. Because it's all relevant. So with volumes of

revolution, you always work your way back to some 2-D diagram. So there's some 2-D

diagram which is always-- two-dimensional diagram, which is always connected with these

problems. I mean, something this hard is really just too hard to do on an exam, right? I mean,

I'm not going to ask you something this complicated on the exam. Because this involves a

three-dimensional visualization. But once you're down to 2-D, you're supposed to be able to

handle it. Now, what's the main issue after you've got your 2-D diagram? The main issue is, do

you want to integrate with respect to dx or dy? And the answer is that it will depend. And if

there's one that's going to cause you incredible difficulty, and I feel that you're not able to

dodge it, then I might give you a hint and say you'd better use shells, or you'd better use disks

or washers or something like that. But if I feel that you're grown up enough to figure out which

one it is, because one of them is so ridiculous you say forget it, immediately, after thinking

about it. Then I won't tell you which one. Because I figure, in other words, I don't want you to

waste your time. But I'm willing to waste a minute or two of your time on a wild goose chase.

So let me give you an example of this. Suppose you're looking at the curve y between 0 and x

- x^3. So this is some kind of lump. Like this. It goes from 0 to 1, because the right-hand side

is 0 at 0 and 1 here. It's some kind of thing. And there are these two possibilities. One of them

is to do shells. And then, so this is supposed to be rotated around the y-axis. In this case. And

the same would apply, actually, to the area problem. So I'm doing a slightly more complicated

problem. But you could ask for the area underneath this, and so forth. OK. So we can

integrate this dx, or we can integrate this dy. This indicates that I'm deciding that this is going

to be of thickness dx, and I'm integrating dx. So that's a choice that I'm making. Now, the

minute I made that choice I know that these are shells. Because they sweep around this way

and that makes them shells. Cylindrical shells. And if I do that, the setup is this. It's 2 2 pi x (x -

x^3) dx. Now, I claim that when you get to this point, you already know you've won. Because

this is an easy integral to calculate. So you're done here. You're happy.



Now, if you happened to say, oh gee, I hate to do this. I want to do something clever, you

could try to do it with cutting this way. Let's do this. And this would be the dy thickness. And

then when you sweep this around, you get what we call a washer. Which is really just the

difference of two disks. So the shape here is this thing swung around this axis. And it looks like

this. So it's going to be the difference of radii. So what's the formula for this? It's some integral

of pi times the right end, which I'll call x_2, and here the left end, which I'll call x_1. So this is pi

pi (x_2^2 - x_1^2) dy. Now, already at this stage, you think to yourself this is more complicated

than the other method. So you've already abandoned it. But I'm just going to go one step

further into this one to see what it is that's happening. If you try to figure out what these values

x_1 and x_2 are, that corresponds to solving for x_1 and x_2 in terms of y. So that's the

following equation. x_1 and x_2 solve the equation that-- the curve, x - x^3 is equal y.

Now, look at this equation. That's the equation x^3-- sorry, x^3 - x + y, I guess. Let's see.

Yeah, that's right, is equal to 0. This is a cubic equation. Although there is a formula for this.

You've never been taught the formula for this equation. So therefore, you will never, ever be

able to get a formula for x_2 and x_1 as a function of y. And you'll never be able to compute

this one. This is more than just a dead end, it's like crash, burn, and, you know, self-destruct.

So there may be such a thing, so do the other way. Good luck, folks.


