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G. GRAPHING FUNCTIONS 

To get a quick insight into how the graph of a function looks, it is very helpful to know 
how certain simple operations on the graph are related to the way the function expression 
looks. We consider these here. 

1. Right-left translation. 

Let c > 0. Start with the graph of some function f(x). Keep the x-axis and y-amis fixed, 
but move the graph c units to the right, or c units to the left. (See the pictures below.) You 
get the graphs of two new functions: 

(1) Moving the f(x) graphc units to the right gives the graph of (x - c)
S left f(X + c) 

If f(x) is given by a formula in x, then f(x - c) is the function obtained by replacing x by 
x - c wherever it occurs in the formula. For instance, 

f() =(--)= (x- ) 2+(X-) 2--z, byalgebra. 

Example 1. Sketch the graph of f(s) = x2 - 2x + 1. 

Solution. By algebra, f(x) = (X - 1)2. Therefore by (1), its graph is 
the one obtained by moving the graph of x2 one unit to the right, as shown. 
The result is a parabola touching the x-axis at x = 1. 

To see the reason for the rule (1), suppose the graph of f(z) is moved c units to the right: 
it becomes then the graph of a new function g(x), whose relation to f(s) is described by 
(see the picture): 

value of g() at zo = value off(z) at o - c f(zo-c). 

This shows that g(z) = f(x - c). x j xYThe reasoning is similar if the ( 
graph is translated c units to the left. Try giving the argument 
yourself while referring to the picture. V-C 

The effect of up-down translation of the graph is much simpler to see. If c > 0, 

(2) Moving the f(x)graph cunits f(T) +gives the graph of -c 
down f (x)-- c 

since for example moving the graph up by c units has the effect of adding c units to each 
function value, and therefore gives us the graph of the function f(s) + c 

Example 2. Sketch the graph of 1 + T/2-. 
Solution Combine rules (1) and (2). First sketch V• , then 

move its graph 1 unit to the right to get the graph of Vf-Z, then 
1 unit up to get the graph of 1 +-,• 1. as shown.1nio th o f1+-,fm -I 

x 



Example 3. Sketch the curve y = z2 + 4x +1. 

Solution We "complete the square": 

2+4z+ = (z2 +4z+4)-3 = (z+2)2-3, 
so we move the graph of z2 to the left 2 units, then 3 units down, 

nettinethe granh shown. 

2. Changing scale: _stretching and shrinking. 

Let c > 1. To stretch the z-axis by the factor c means to move the point 1to the position 
formerly occupied by c,and in general, the point so to the position formerly occupied by c0o. 
Similarly, to shrink the z-axis by the factor c means to move so to the position previously 
taken by zo/c. What happens to the graph of f(z) when we stretch or shrink the z-axis? 

Stretching 	 {f(z/c) 
(3) tretci•ng the -aisby c changes the graph of f(z) into that of f(c)Shranking 	 f(cm) 
The picture explains this rule; it illustrates stretching by the factor fr XC) 
c > 1. The new function has the same value at so that f(z) has 
at zo/c, so that it is given by the rule zo -+ f(zo/c), which means i 
that it is the function f(z/c). /e - o 

If the y-axis is stretched by the factor c > 1, each y-value is multiplied by c, so the new 
graph is that of the function cf(z): 

(4) rething the y-ais by c changes the graph of f(z) into that of cf(s) 
Shrinking	 f(z)/c 

1

Example 4. Sketch the graph of . 

Solution. Start with the graph of 1/z,move it 1lunit to the 
right to get the graph of 1/(z - 1), then shrink the x-axis by the 
factor 2 to get the graph of the given function. See the picture. 

3. Reflecting in the z- and V-axes: even and odd functions. 

To reflect the graph of f(z) in the y-axis, just flip the plane over around 
the y-axis. This carries the point (z, y) into the point (-z,y), and the graph .4A(x) 

of f(z) into the graph of f(-z). Namely, the new function has the same 
y-value at zo as f(s) has at -zo, so it is given by the rule so -+ f(-zo) 
and is the function f(-z). ) an the 

Similarly, reflecting the si-plane in the x-axis carries (z, y) to the point (Z,-y) and the 
graph of f(z) gets carried into that of -f(s). 

Finally, relecting first in the y-axis and then in the x-axis carries the

point (z,y) into the point (-z, -y). This is called a reflection through

the origin. The graph of f(z) gets carried into the graph of -f(-z), by

combining the above two results. Summarizing:


y-azis 	 f(-z)
(5) 	 Reflecting in the z-azis move the graph of 1(z) into that of -f(z)


origin -(-)
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{ y-axis 	 f -X)
(5) 	 Reflecting in the s-axis moves the graph off(s) into that of -f(s) 

origin . -f(-X). 

Of importance are those functions f(t) whose graphs, are symmetric with respect to the 
y-axis - that is, reflection in the y-axis doesn't change the graph; such functions are called 
even. Funrctions whose graphs are symmetric with respect to the origin are called odd. In 
terms of their expression in s, 

(6) f(-X) =f(s) definition of even function 
(7) f(-X) 	= -f (s) definition of odd function 

Example 5. Show thit a polynomial with only even powers, like z4 - 2s2 + 7, is an 
even function, and a polynomial with only odd powers, like 35s - s + 2z, is an odd function 
- this, by the way, explains the terminology "even" and uodd" used for functions.. 

Solution. We have to show (6) and (7) hold for polynomials with respectively only even 
or odd powers, but this follows immediately from the fact that for any non-negative integer 
n,.we have 

e ifniseven, 
-e", if n isodd. 

The following easily proved rules predict the odd- or even-ness of the product or quotient 
of two odd or even functions: 

(8) even- even = even odd odd = even odd. even = odd 
(9) even/even = even odd/odd =even odd/even = odd 

Example 6. is of the form odd/even, therefore it is odd; 

(3 + x4)1/2(X - s) has the form even odd, so it is odd. 

4. The trigonometric functions. 
... e trigonometric functions offer further illustrations of the ideas about translation, 

change of scale, and symmetry that we have been discussing. Your book reviews the standard 
facts about them in section 9.1, which you should refer to as needed. 

The graphs of sinx and cos are crudely sketched below. (In calculus, the variable s is 
always to be in radians; review radian measure in section 9.1 if you have forgotten it. Briefly, 
there are 2r radians in a 3600 angle, so that for example a right angle is r/2 radians.) 

As the graphs suggest and the unit circle picture shows, 

(10) cos(-s) = cos 	 (even function) sin(-s) = -sin (odd function). 

From the standard triangle at the right, one sees that 

cos(7r/2 - x) "= sinz, 

L 



and since cos x is an even function, this shows thi 

(11.) cos(x- r/2) = sinx. 

From (11), we see that moving the graph 
of cosax to the right by r/2 units turns it 
into the graph of sin z. (See picture.) 

The trigonometric function I 

(12) tan x= cos X 
is also important; its graph is sketched at the right. It is an odd 
function, by (9) and (10), since it has the form odd/even. 

Periodicity 

Aix-important property of the trigonometric functions is that they repeat their values: 

(13) sin(x + 27) = sinx, cos(r + 2w) = cos . 

This is so because x + 2wr and x represent in radians the same angle. 

From the graphical point of view, equations (13) say that if we move the graph of sin 
or cosax to the left by 2wr units, it will coincide with itself. 

From the function viewpoint, equations (13) say that sin x and cos x are periodicfunctions, 
with period 2r. In general, let c > 0; we say that f(x) is periodic, with period c, if 
(14) f(x + c) = f () for all x, and


(14') c is the smallest positive number for which (14) is true.


By rule (1), the graph of a periodic function having period c coincides with itself when it is 
translated c units to the left. If we replace x by x- c in (14), we see that the graph will also 
coincide with itself if it is moved to the right by c units. But beware: if a function is made 
by combining other periodic functions, you cannot always predict the period. For example, 
although it is true that 

tan(m +2r)= tanx and cos2(x + 2r)= cos 2x , 
the period of both tan x and cosa2 is actually r,as the above figure suggests for tan x. 

The general sinusoidal wave. 

The graph. of sin i is referred to as a "pure wave" or a "sinusoidal oscillation". We now 
consider to what extent we can change how it looks by applying the geometric operations 
of translation and scale change discussed- earlier. 

a) Start with sin i, which, has period 2r and oscillates between 11. 

b) Stretch the y axis by the factor A > 0; by.(4) this gives A sin x,which has period 2r 
and oscillates between ±A. 

c) Shrink the x-axis by the factor k > 0; by (3), this gives Asin ks, which has period 
2r/k,since 

2x 
Asink( + 2 ) = Asin(kx + 2r) A sin kx. 

Asmk( +%-) =

d) Move the graph 0 units to the right; by (1), this gives 

I 
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(15) Asink(z- ) , A, ck> 0,@>0, general sinusoidalwave 

which has A. ..--­

period2wi/k (the wave repeats itself every 2wr/k units);
angularfrequency k (has k complete cycles as xgoes from 0 to 2wr); A 
amplitude A (the wave oscillates between A and -A); 
phase angle 4 (the midpoint of the wave is at x = 4). . --- -A 

Notice that the function (15) depends on three constants: k,A, and 4. We call such 
constants parameters;their value determines the shape and position of the wave. 

By using trigonometric identities, it is possible to write (15) in another form, which also 
has three parameters: 

(16) a sinkx + bcoskc 

The relation between the parameters in the two forms is: 

(17) a = A cos ko, b= -Asin ck; A== a2+b2, tantik -b 
a 

Proof of the equivalence of (15) and (16). 

(15) = (16): from the identity sin(a + 6) = sin acosf + cosasinfl, we get 

Asin(k(x - ~)) = Asin(kx - kl)= AcosckIsinkC- Asin klcoskc 
which has the form of (16), with the values for a and b given in (17). 

(16) ±= (15): square the two equations on the left of (17) and add them; this gives 

a2 + b2 = A (cos2 k# + sinckt) = A2 , showing that A = /aa +b 2 . 

If instead we take the ratio of the two equations on the left of (17), we get -b/a = tan k#, 
as promised. 0 

Example 7. Find the period, frequency, amplitude, and phase angle of the wave 
represented by the functions 

a) 2sin(3z - r/6) b) -2 cos(2x - r/2) 

Solution. 

a) Writing the function in the form (15), we get 2sin3(x - r/18), which shows it has 
period 2r/3, frequency 3, amplitude 2, and phase angle r/18 (or 100). 

b) We get rid of the - sign by using - cos = cos(z - 7r) - translating the cosine 
curve wr units to the right is the same as reflecting it in the z-axis (this is the best way to 
remember such relations). We get then 

-2 cos(2z - r/2) = 2.cos(2z - r/2 - r) 

= 2sin(2z- r), by (11); 

= 2sin2(x - 7r/2). 



Example 8. Sketch the curve sin2z + cos 2z. 

Solution Transforming it into the form (15), we can get A and # by using (19): 

A=v; tan 20=-l - 2 =135= 3r/4, ~ =3Ir/8. 

So the function is also representable as V2sin2(z - 3r/8); it is a wave of amplitude V2,9 
period r, frequncy 2, and phase angle 37r/8, and can be sketched using this data. 

5. Reflection in the diagonal line; inverse functions. 

As our final geometric operation on graphs, we consider the effect of 
in the diagonal line p = z. 

This reflection can be carried out by flipping the plane over about t] 
diagonal line. Each point of the diagonal stays fixed; the z-and y-axes a 
interchanged. The points (a,b) and (b,a) are interchanged, as the picts 
shnws_ because the two rectangles are interchanged. 

To see the effect of this on the function, let's consider first a simple example. 

Example 9. If the graph of f() = a, z > 0 is reflected in the diagonal, what 
function corresponds to the reflected graph? 

Solution. The original curve is the graph of the equation: p=-z 2 , a > 0. 

Reflection corresponds to interchanging the two axes; thus the reflected curve is the graph 
of the equation: z = y, y 2 0. 

To find the corresponding function, we have to express p explicitly in terms of z, which 
we do by solving the equation for y: y = V, z _20 ; the restriction on a follows 
because if z = y and y 2 0, then x2 0 also. 

•y y O= nodiag Xxb_=zo'= ,


Remarks. 

1. When we flip the curve about the diagonal line, we do not interchange the labels 
on the z- and p-axes. The coordinate axes remain the same - it is only the curve that 
is moved (imagine it drawn on an overhead-projector transparency, and the transparency 
fipped over). This is analogous to our discussion in section 1 oftranslation, where the curve 
was moved to the right, but the coordinate axes themselves remained unchanged. 

2. It was necessary in the previous example to restrict the domain of z in the original 
function z2 ,so that after being fipped, its graph was still the graph of a function. Ifwe 
hadn't, the flipped curve would have been a parabola.lying on its side; this is not the graph 
of a function, since it has two y-values over each z-value. 

The function having the refected graph, p= , a 2 0 is called the inerse fno­
tion to the original function p = z2, z 2 0. The general procedure may be represented 
schematically by: 
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y= J(s) - =fAy) y= 9(m) 
original graph switch x and y reflected graph solve for y reflected graph 

In this scheme, the equations z = f (y) and y = g(z) have the same graph; all that has been 
done is to transform the equation algebraically, so that y appears as an explicit function 
of z. This function g(z) is called the inverse function to f(z) over the given interval; in 
general it will be necessary to restrict the domain of f(x) to an interval, so that the reflected 
graph will be the graph of a function. 

To summarize: f(z) and g(z) are inverse functions if 

(i) geometically,the graphs of f(z) and g(z) are reflections of each other in the diagonal 
line y =z; 

(ii) analytically, = f (y) and y = g(z) are equivalent equations, either arising from the 
other by solving exIlicitly for the relevant variable. 

1
Example 10. Find the inverse function to , a>>1.1.

z-1 

Solution. We introduce a dependent variable y, then interchange z and y, getting 

1 
s= - y>1. 

We solve this algebraically for y, getting 

(20) y= 1+-,1 
>O. 

(The domain is restricted because if y > 1, then equation (20) implies that 
x > 0.) The right side of (20) is the desired inverse function. The graphs 

enrasptc-heod 

It often happens that in determining the inverse to f(z), the equation 

(21) = f(y) 
cannot be solved explicitly in terms of previously known functions. In that case, the corre­
sponding equation 

(22) ,= 9() 

is viewed as deftning the inverse function to f(z), when taken with (21).. Once again, care 
must be taken to restrict the domain of f(z) as necessary to ensure that the relected will 
indeed define a function g(z), i.e., will not be multiple-valued. A typical example is the 
following. 

Example 11. Find the inverse function to sinx. 

Solution. Considering its graph, we see that for the reflected graph to define a function, 
we have to restrict the domain. The most natural choice is to consider the restricted function 

(23) " y= sinz, -ir/2 < s < w/2. 



Example 11. Find the inverse function to sin x. 

Solution. Considering its graph, we see that for the reflected graph to define a function, 
we have to restrict the domain. The most natural choice is to consider the restricted function 

(23) y = sinx, .- r/2 < z < 7r/2. 

-The inverse function is then denoted sin x, or sometimes Arcsin x; it is defined by the 
pair of equivalent equations 

(24) =siny, -ir/2 < x < r/2 = y=sin-lz, -1 z<l1. 

The domain [-1, 1] of sin - 1  is evident from the picture - it is the same as the range of 
sinx over [--r/2, r/2]. 

As examples of its values, sin- ' = r/2, since sinir/2 = 1; similarly, sin- ' 1/2 = r/6. 

Care is needed in handling this function. For example, substituting the left equation in 
(24) into the right equation says that 

(25) sin-1(siny) = y, -r/2 < y 5 x/2 . 

It is common to see the restriction on y carelessly omitted, since the equation by itself seems 
"obvious". But without the restriction, it is not even true; for example if y =i, 

sin - 1(sin 7r) = 0. 

.1 I 

Exercises: Section 1A 


