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Lecture 6 18.01 Fall 2006 

Lecture 6: Exponential and Log, Logarithmic 
Differentiation, Hyperbolic Functions 

Taking the derivatives of exponentials and logarithms 

Background 

We always assume the base, a, is greater than 1. 

a 0 = 1; a 1 = a; a 2 = a a; . . . · 

a x1+x2 = a x1 a x2 

(a x1 )x2 = a x1 x2 

p 
q

qa = 
√

ap (where p and q are integers) 

rTo define a for real numbers r, fill in by continuity. 

d 
Today’s main task: find a x 

dx 

We can write 
d ax+Δx x 

x a = lim 
− a

dx Δx 0 Δx→

We can factor out the a x:

x+Δx x Δx Δx


lim 
a − a

= lim a x a − 1
= a x lim 

a − 1 
Δx 0 Δx Δx 0 Δx Δx 0 Δx→ → →

Let’s call 

M(a) ≡ lim 
aΔx − 1 

Δx 0 Δx→

We don’t yet know what M(a) is, but we can say 

d 
a x = M(a)a x 

dx 

Here are two ways to describe M(a): 

d
1. Analytically M(a) = a x at x = 0. 

dx 

Indeed, M(a) = lim 
a0+Δx − a0 

= 
d

a x 

Δx 0 Δx dx→
x=0 
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M(a) 
(slope of ax at x=0)

ax

Figure 1: Geometric definition of M(a) 

x2. Geometrically, M(a) is the slope of the graph y = a at x = 0. 

The trick to figuring out what M(a) is is to beg the question and define e as the number such 
that M(e) = 1. Now can we be sure there is such a number e? First notice that as the base a 

xincreases, the graph a gets steeper. Next, we will estimate the slope M(a) for a = 2 and a = 4 
geometrically. Look at the graph of 2x in Fig. 2. The secant line from (0, 1) to (1, 2) of the graph 
y = 2x has slope 1. Therefore, the slope of y = 2x at x = 0 is less: M(2) < 1 (see Fig. 2). 

1 1
Next, look at the graph of 4x in Fig. 3. The secant line from (− 

2 
, 
2
) to (1, 0) on the graph of 

y = 4x has slope 1. Therefore, the slope of y = 4x at x = 0 is greater than M(4) > 1 (see Fig. 3). 

Somewhere in between 2 and 4 there is a base whose slope at x = 0 is 1. 
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y=2x

slope M(2) 

slope = 1 (1,2)

sec
ant lin

e

Figure 2: Slope M(2) < 1


y=4x

secant line

(1,0)(-1/2, 1/2)

slope M(4)

Figure 3: Slope M(4) > 1
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Thus we can define e to be the unique number such that 

M(e) = 1 

or, to put it another way, 

lim 
eh − 1 

= 1 
h 0 h→

or, to put it still another way, 
d 

(e x) = 1 at x = 0 
dx


d d

What is (e x)? We just defined M(e) = 1, and (e x) = M(e)e x . So 

dx dx 

d 
(e x) = e x 

dx 

Natural log (inverse function of ex) 

To understand M(a) better, we study the natural log function ln(x). This function is defined as 
follows: 

If y = e x , then ln(y) = x 

(or) 

If w = ln(x), then e x = w 

xNote that e is always positive, even if x is negative. 
Recall that ln(1) = 0; ln(x) < 0 for 0 < x < 1; ln(x) > 0 for x > 1. Recall also that 

ln(x1x2) = ln x1 + ln x2 

Let us use implicit differentiation to find 
d 

ln(x). w = ln(x). We want to find 
dw 

. 
dx dx 

e w = x 
d 

(e w) = 
d 

(x)
dx dx 

d 
(e w) 

dw 
= 1 

dw dx 

e w dw 
= 1 

dx 
dw 1 1 

= = 
dx ew x 

d 1
(ln(x)) = 

dx x 
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d 
Finally, what about (a x)? 

dx

There are two methods we can use: 

Method 1: Write base e and use chain rule. 

Rewrite a as eln(a). Then, � �x 
a x = eln(a) = e x ln(a) 

That looks like it might be tricky to differentiate. Let’s work up to it: 

d 
e x = e x 

dx 
and by the chain rule, 

d 
e 3x = 3e 3x 

dx 

Remember, ln(a) is just a constant number– not a variable! Therefore, 

d
e(ln a)x = (ln a)e(ln a)x 

dx 
or 

d 
(a x) = ln(a) a x 

dx 
· 

Recall that 
d 

(a x) = M (a) a x 

dx 
·


So now we know the value of M(a): M(a) = ln(a).


Even if we insist on starting with another base, like 10, the natural logarithm appears:


d 
10x = (ln 10)10x 

dx 

The base e may seem strange at first. But, it comes up everywhere. After a while, you’ll learn to 
appreciate just how natural it is. 

Method 2: Logarithmic Differentiation. 

d d
The idea is to find f(x) by finding ln(f(x)) instead. Sometimes this approach is easier. Let 

dx dx 
u = f(x). � � 

d d ln(u) du 1 du
ln(u) = = 

dx du dx u dx 

du
Since u = f and = f �, we can also write 

dx 

f �
(ln f)� = or f � = f(ln f)� 

f 
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xApply this to f(x) = a . 

d d d
ln f(x) = x ln a = ln(f) = ln(a x) = (x ln(a)) = ln(a).⇒ 

dx dx dx 

(Remember, ln(a) is a constant, not a variable.) Hence, 

d f � d x x(ln f) = ln(a) = = ln(a) = f � = ln(a)f = a = (ln a)a 
dx 

⇒ 
f 

⇒ ⇒ 
dx 

d
Example 1. (x x) = ? 

dx 

With variable (“moving”) exponents, you should use either base e or logarithmic differentiation. 
In this example, we will use the latter. 

f = x x 

ln f = x ln x 
1

(ln f)� = 1 (ln x) + x = ln(x) + 1 · 
x 

f �
(ln f)� = 

f 

Therefore, 
f � = f(ln f)� = x x (ln(x) + 1) 

If you wanted to solve this using the base e approach, you would say f = ex ln x and differentiate 
it using the chain rule. It gets you the same answer, but requires a little more writing. 

� �k1
Example 2. Use logs to evaluate lim 1 + . 

k→∞ k 

Because the exponent k changes, it is better to find the limit of the logarithm. 

�� �k 
� 

1
lim ln 1 + 

k→∞ k 

We know that �� �k 
� � �


1 1

ln 1 + = k ln 1 + 

k k 

1
This expression has two competing parts, which balance: k →∞ while ln 1 + 

k 
→ 0. 

�� 
1 
�k 

� � 
1 
� 

ln 
� 
1 + k 

1 
� 

ln(1 + h) 1
ln 1 + = k ln 1 + = 1 = (with h = )

k k h k
k 

Next, because ln 1 = 0 �� �k 
�


ln 1 + 
1 

=
ln(1 + h) − ln(1)


k h
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1
Take the limit: h = 

k 
→ 0 as k →∞, so that 

ln(1 + h) − ln(1) d �� lim = ln(x)� = 1 
h 0 h dx x=1→

In all, � �k1
lim ln 1 + = 1. 

k→∞ k � �k1
We have just found that ak = ln[ 1 + 

k 
] → 1 as k →∞. � �k1

If bk = 1 + 
k 

, then bk = e ak → e 1 as k → ∞. In other words, we have evaluated the limit we 

wanted: 

� �k1
lim 1 + = e 

k→∞ k 

Remark 1. We never figured out what the exact numerical value of e was. Now we can use this 
limit formula; k = 10 gives a pretty good approximation to the actual value of e. 

Remark 2. Logs are used in all sciences and even in finance. Think about the stock market. If I 
say the market fell 50 points today, you’d need to know whether the market average before the drop 
was 300 points or 10, 000. In other words, you care about the percent change, or the ratio of the 
change to the starting value: 

f �(t) d 
= ln(f(t))

f(t) dt 
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