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Lecture 30

18.01 Fall 2006

Lecture 30: Integration by Parts, Reduction

Formulae

Integration by Parts

Remember the product rule:
(uwv) = v'v +u’

We can rewrite that as
w’ = (uwv) —u'v

Integrate this to get the formula for integration by parts:

/uv’dmzuv—/u’vdaz

Example 1. /tan_lxdﬂc.

At first, it’s not clear how integration by parts helps. Write

/tanflxdxz/tanflx(l-dx) = /uv’da:

1

with

u=tan 'z and ¢ =1.

Therefore,
1

1+ 22
Plug all of these into the formula for integration by parts to get:

/tan_lwdm = /uv’ dx = (tan_lx)x—/ ! (x)dx

1+ 22

v=xz and u =

1
:xtanflx—§1n|1+x2|—|—c

Alternative Approach to Integration by Parts
As above, the product rule:
(wv) = v'v +u’

can be rewritten as
w’ = (wv) —u'v

This time, let’s take the definite integral:

b b b
/uv’d:v:/ (uv)’dm—/ u'vdx
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By the fundamental theorem of calculus, we can say

b b b
/ w' dr = uv| — / w'vdx
a a a

Another notation in the indefinite case is

/udv:uv—/vdu

dv=v'dr = w'dr=udv and du=udr = vvdr=vuv'dx=vdu

This is the same because

Example 2. /(ln x)dx

1
u=Inz; du=—dr and dv=dzx;v==x
x

1
/(lnx)dxlenx—/;v() dw:xlnx—/dx:xlnx—x—i—c
x

We can also use “advanced guessing” to solve this problem. We know that the derivative of

something equals In x:

%(??) =lnz

Let’s try
d (xlnz) =Inz + ! Inz+1
—(znz)=haex+z-—=Inzx
dx x

That’s almost it, but not quite. Let’s repair this guess to get:

df(xlnx—a:)zlnx—i—l—l:lnx
x

Reduction Formulas (Recurrence Formulas)

Example 3. /(lnx)n dx
Let’s try:

u=(Inz)" = v =n(lnz)"! @)

v =dv; v=1x
Plugging these into the formula for integration by parts gives us:

1
/(ln x)"dr = x(lnx)" — /n(ln x)"lsc/é%:lx
x
Keep repeating integration by parts to get the full formula: n — (n—1) —» (n—2) — (n—3) — etc
Example 4. /:c”e:” dx Let’s try:

u=2" = v =nz""; V= = v=c¢
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Putting these into the integration by parts formula gives us:

/x"e"” dr = z2"e* — /naz"flegﬂ dx

Repeat, going from n — (n — 1) — (n — 2) — etc.

If you change the integrals just a little bit, they become impossible to evaluate:

Bad news:
/ (tan_1 x)2 dx = impossible

eac
/ — dx = also impossible
x

When you can’t evaluate an integral, then

2
ex
—dx

1 x

is an answer, not a question. This is the solution— you don’t have to integrate it!

The most important thing is setting up the integral! (Once you've done that, you can always
evaluate it numerically on a computer.) So, why bother to evaluate integrals by hand, then? Because

Good news:

you often get families of related integrals, such as

* e
F = —d
(a) /x“f

where you want to find how the answer depends on,
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Arc Length

This is very useful to know for 18.02 (multi-variable calculus).

»
>

Figure 1: Infinitesimal Arc Length ds

ds dy

dx

Figure 2: Zoom in on Figure [1|to see an approximate right triangle.

In Figures [[]and [2] s denotes arc length and ds = the infinitesmal of arc length.
ds = /(dz)? + (dy)? = \/1 + (dy/dz)*dx

Integrating with respect to ds finds the length of a curve between two points (see Figure [3).

To find the length of the curve between Py and Pj, evaluate:

Py
/ ds
Py
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\4

Figure 3: Find length of curve between Py and P;.

We want to integrate with respect to z, not s, so we do the same algebra as above to find ds in

terms of dz. )
ds)? dz)? dy)? d
G _ (P 8y ()

P b 2
ds :/ 1+ (dy) dx
P() a d‘r

Example 5: The Circle. 2% + y* = 1 (see Figure {4)).

Therefore,

Figure 4: The circle in Example 1.
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We want to find the length of the arc in Figure

-

Figure 5: Arc length to be evaluated.
y=+1-— 22

dy 2z <1) -

dr 1 —22\2 V1 — 22

ds = \/1+ (\/l_xixzfdx

I+ — 2:1+ x? :1—x2+x2: 1
V1—22 1— 22 1—22 1—a22
1
ds =/ ——=dzx
V1-—22
@ dzx . 1 a . 1 . 1 . 1
s = ———— =gin" x| =sin" "a—sin" " 0=sin""a
/o V1—22 0
sins =a

This is illustrated in Figure [0}
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Figure 6: s = angle in radians.

Parametric Equations

Example 6.
T = acost
y =asint
Ask yourself: what’s constant? What’s varying? Here, ¢ is variable and a is constant
Is there a relationship between z and y?7 Yes:
22 +y? = a’cos’ t + a?sin? t = a®

Extra information (besides the circle):
At t =0,

x=acos0=a and y=asin0=0
T
Att=—
27

x:acosg:O and y:asing:a

Thus, for 0 < t < m/2, a quarter circle is traced counter-clockwise (Figure @
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t=T0/2
(0,a)

(a,0)
t=0

Figure 7: Example 6. x = acost, y = asint; the particle is moving counterclockwise.

Example 7: The Ellipse See Figure

r = 2sint; y = cost

4 y? = 1(= (2sint)?/4 + (cost)? = sin’t + cos’t = 1)

(2,0)
t=Tt/2

Figure 8: Ellipse: z = 2sint, y = cost (traced clockwise).

Arclength ds for Example 6.
dxr = —asintdt, dy = acostdt
ds = /(dz)? + (dy)? = \/(—asintdt)2 + (acostdt)2 = \/(asint)? + (acost)2dt = adt






