MIT OpenCourseWare http://ocw.mit.edu

18.01 Single Variable Calculus Fall 2006

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 28: Integration by Inverse Substitution; Completing the Square

Trigonometric Substitutions, continued

Figure 1: Find area of shaded portion of semicircle.

$$\int_0^x \sqrt{a^2 - t^2} dt$$

 $t = a \sin u$; $dt = a \cos u \, du$

$$a^{2} - t^{2} = a^{2} - a^{2} \sin^{2} u = a^{2} \cos^{2} u \implies \sqrt{a^{2} - t^{2}} = a \cos u$$
 (No more square root!)

Start: $x = -a \Leftrightarrow u = -\pi/2$; Finish: $x = a \Leftrightarrow u = \pi/2$

$$\int \sqrt{a^2 - t^2} \, dt = \int a^2 \cos^2 u \, du = a^2 \int \frac{1 + \cos(2u)}{2} du = a^2 \left[\frac{u}{2} + \frac{\sin(2u)}{4} \right] + c$$

(Recall,
$$\cos^2 u = \frac{1 + \cos(2u)}{2}$$
).

We want to express this in terms of x, not u. When t = 0, $a \sin u = 0$, and therefore u = 0. When t = x, $a \sin u = x$, and therefore $u = \sin^{-1}(x/a)$.

$$\frac{\sin(2u)}{4} = \frac{2\sin u \cos u}{4} = \frac{1}{2}\sin u \cos u$$

$$\sin u = \sin \left(\sin^{-1}(x/a) \right) = \frac{x}{a}$$

How can we find $\cos u = \cos \left(\sin^{-1}(x/a)\right)$? Answer: use a right triangle (Figure 2).

Figure 2: $\sin u = x/a$; $\cos u = \sqrt{a^2 - x^2}/a$.

From the diagram, we see

$$\cos u = \frac{\sqrt{a^2 - x^2}}{a}$$

And finally,

$$\int_0^x \sqrt{a^2 - t^2} \, dt = a^2 \left[\frac{u}{4} + \frac{1}{2} \sin u \cos u \right] - 0 = a^2 \left[\frac{\sin^{-1}(x/a)}{2} + \frac{1}{2} \left(\frac{x}{a} \right) \frac{\sqrt{a^2 - x^2}}{a} \right]$$
$$\int_0^x \sqrt{a^2 - t^2} \, dt = \frac{a^2}{2} \sin^{-1}(\frac{x}{a}) + \frac{1}{2} x \sqrt{a^2 - x^2}$$

When the *answer* is this complicated, the route to getting there has to be rather complicated. There's no way to avoid the complexity.

Let's double-check this answer. The area of the upper shaded sector in Figure 3 is $\frac{1}{2}a^2u$. The area of the lower shaded region, which is a triangle of height $\sqrt{a^2-x^2}$ and base x, is $\frac{1}{2}x\sqrt{a^2-x^2}$.

Figure 3: Area divided into a sector and a triangle.

Here is a list of integrals that can be computed using a trig substitution and a trig identity.

$$\begin{array}{ll} \text{integral} & \text{substitution} & \text{trig identity} \\ \int \frac{dx}{\sqrt{x^2+1}} & x = \tan u & \tan^2 u + 1 = \sec^2 u \\ \int \frac{dx}{\sqrt{x^2-1}} & x = \sec u & \sec^2 u - 1 = \tan^2 u \\ \int \frac{dx}{\sqrt{1-x^2}} & x = \sin u & 1 - \sin^2 u = \cos^2 u \\ \end{array}$$

Let's extend this further. How can we evaluate an integral like this?

$$\int \frac{dx}{\sqrt{x^2 + 4x}}$$

When you have a linear and a quadratic term under the square root, complete the square.

$$x^2 + 4x = (\text{something})^2 \pm \text{constant}$$

In this case,

$$(x+2)^2 = x^2 + 4x + 4 \implies x^2 + 4x = (x+2)^2 - 4$$

Now, we make a substitution.

$$v = x + 2$$
 and $dv = dx$

Plugging these in gives us

$$\int \frac{dx}{\sqrt{(x+2)^2 - 4}} = \int \frac{dv}{\sqrt{v^2 - 4}}$$

Now, let

$$v = 2 \sec u \quad \text{and} \quad dv = 2 \sec u \tan u$$

$$\int \frac{dv}{\sqrt{v^2 - 4}} = \int \frac{2 \sec u \tan u \, du}{2 \tan u} = \int \sec u \, du$$

Remember that

$$\int \sec u \, du = \ln(\sec u + \tan u) + c$$

Finally, rewrite everything in terms of x.

$$v = 2 \sec u \Leftrightarrow \cos u = \frac{2}{v}$$

Set up a right triangle as in Figure 4. Express $\tan u$ in terms of v.

Figure 4: $\sec u = v/2$ or $\cos u = 2/v$.

Just from looking at the triangle, we can read off

$$\sec u = \frac{v}{2} \quad \text{and} \quad \tan u = \frac{\sqrt{v^2 - 4}}{2}$$

$$\int 2 \sec u \, du = \ln\left(\frac{v}{2} + \frac{\sqrt{v^2 - 4}}{2}\right) + c$$

$$= \ln(v + \sqrt{v^2 - 4}) - \ln 2 + c$$

We can combine those last two terms into another constant, \tilde{c} .

$$\int \frac{dx}{\sqrt{x^2 + 4x}} = \ln(x + 2 + \sqrt{x^2 + 4x}) + \tilde{c}$$

Here's a teaser for next time. In the next lecture, we'll integrate <u>all</u> rational functions. By "rational functions," we mean functions that are the ratios of polynomials:

$$\frac{P(x)}{Q(x)}$$

It's easy to evaluate an expression like this:

$$\int \left(\frac{1}{x-1} + \frac{3}{x+2}\right) dx = \ln|x-1| + 3\ln|x+2| + c$$

If we write it a bit differently, however, it becomes much harder to integrate:

$$\frac{1}{x-1} + \frac{3}{x+2} = \frac{x+2+3(x-1)}{(x-1)(x+2)} = \frac{4x-1}{x^2+x-2}$$

$$\int \frac{4x-1}{x^2+x-2} = ???$$

How can we reorganize what to do starting from $(4x-1)/(x^2+x-2)$? Next time, we'll see how. It involves some algebra.