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Lecture 23 18.01 Fall 2006 

Lecture 23: Work, Average Value, Probability 

Application of Integration to Average Value 

You already know how to take the average of a set of discrete numbers: 

a1 + a2 a1 + a2 + a3 or
2 3 

Now, we want to find the average of a continuum. 

y=f(x)

a b
.
x4

y4.

Figure 1: Discrete approximation to y = f (x) on a ≤ x ≤ b. 

Average ≈ 
y1 + y2 + ... + yn 

n 

where 
a = x0 < x1 < xn = b· · · 

y0 = f(x0), y1 = f(x1), . . . yn = f(xn) 

and 

n(Δx) = b − a ⇐⇒ Δx = 
b − 

n

a 

and 

The limit of the Riemann Sums is � b 

lim (y1 + · · · + yn) 
b − 

n

a 
= f(x) dx 

a n→∞ 

Divide by b − a to get the continuous average 

y1 + + yn 1 
� b 

lim 
· · · 

= f(x) dx 
n→∞ n b − a a 
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area = �/2

y=√1-x2

Figure 2: Average height of the semicircle. 

Example 1. Find the average of y = 
√

1 − x2 on the interval −1 ≤ x ≤ 1. (See Figure 2) 

1 
� 1 � 1 � π � π

Average height = 
2 

1 − x2dx =
2 2 

=
4−1 

Example 2. The average of a constant is the same constant � b1 
53 dx = 53 

b − a a 

Example 3. Find the average height y on a semicircle, with respect to arclength. (Use dθ not dx. 
See Figure 3) 

equal weighting in θ

different weighting in x

Figure 3: Different weighted averages. 
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y = sin θ � π1 1 
(− cos θ) 

π 1 2
Average = sin θ dθ = (− cos π − (− cos 0)) = = 

0 ππ π π0 

Example 4. Find the average temperature of water in the witches cauldron from last lecture. (See 
Figure 4). 

2m

1m

Figure 4: y = x2, rotated about the y-axis. 

First, recall how to find the volume of the solid of revolution by disks. � 1 � 1 πy2 1 π 
= 

0 2
V = (πx2) dy = πy dy = 

20 0 

Recall that T (y) = 100 − 30y and (T (0) = 100o; T (1) = 70o). The average temperature per unit 
volume is computed by giving an importance or “weighting” w(y) = πy to the disk at height y. � 1 

T (y)w(y) dy
0 � 1 

w(y) dy
0 

The numerator is � 1 � 1 1 
(100 − 30y)ydy = π(500y 2 − 10y 3) = 40πT πy dy = π 

0 0 

Thus the average temperature is: 

0 

40π 
= 80oC 

π/2 

Compare this with the average taken with respect to height y: � 1 � 11 
T dy = 

1 
(100 − 30y)dy = (100y − 15y 2) 

1 
= 85oC 

00 0 

T is linear. Largest T = 100oC, smallest T = 70oC, and the average of the two is 

70 + 100 
= 85 

2 
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The answer 85o is consistent with the ordinary average. The weighted average (integration with 
respect to πy dy) is lower (80o) because there is more water at cooler temperatures in the upper 
parts of the cauldron. 

Dart board, revisited 

Last time, we said that the accuracy of your aim at a dart board follows a “normal distribution”: 

2 

ce−r 

Now, let’s pretend someone – say, your little brother – foolishly decides to stand close to the dart 
board. What is the chance that he’ll get hit by a stray dart? 

r₁

2r₁

3r₁

little 
brother

dart board

Figure 5: Shaded section is 2ri < r < 3r1 between 3 and 5 o’clock. 

To make our calculations easier, let’s approximate your brother as a sector (the shaded region 
in Fig. 5). Your brother doesn’t quite stand in front of the dart board. Let us say he stands at a 
distance r from the center where 2r1 < r < 3r1 and r1 is the radius of the dart board. Note that 
your brother doesn’t surround the dart board. Let us say he covers the region between 3 o’clock 

1
and 5 o’clock, or of a ring. 

6 

Remember that 
part

probability = 
whole 

4 



� � 

��� � � 

� ��� 

� � ��� 

Lecture 23 18.01 Fall 2006 

dr
2

width dr, 
circumference 2πr
weighting ce-rr

Figure 6: Integrating over rings. 

� 3r1 �∞ 

2
The ring has weight ce−r (2πr)(dr) (see Figure 6). The probability of a dart hitting your brother 
is: 

1
2r1 

ce−r 2 
2πr dr 6 

ce−r2 2πr dr 
0 

Recall that 
1 

= 
5 − 3 
12 

is our approximation to the portion of the circumference where the little 
6 

brother stands. (Note: e−r 2 

= e(−r 2) not (e−r)2 ) 

� b 
2 1 

e−r 2 b 1 1 d 
e−b2 2 

e−r 2 2 

= −2re−r re−r e−a+dr = − 
a 

= −
2 2 2 dra 

Denominator:
2

∞ 
2 1 R→∞ 1 

e−R2 1 
e−02 1 

=e−r e−r +rdr = − = −
2 2 2 200 

(Note that e−R2 → 0 as R →∞.) 

Figure 7: Normal Distribution. 

2 21 
� 3r1 ce−r 2πr dr 1 

� 3r1 e−r r dr 1 
� 3r1

2 
26 2r1 = 6 2r1 = e−r r dr = 

−e−r 3r1 

Probability = ∞ 
ce−r2 2πr dr 

∞ 2 r dr 3 6e−r 2r12r10 0 
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Probability = 
−e−9r 21


2
1
+ e−4r 

6

Let’s assume that the person throwing the darts hits the dartboard 0 ≤ r ≤ r1 about half the time. 
(Based on personal experience with 7-year-olds, this is realistic.) 

1
 1
r1 2
 2
1
 + 1 

2


P (0 ≤ r ≤ r1) = 2e−r rdr = −e−r e−r1= = = ⇒
2
 2
0 

1
2
1
e−r = 

2
� �9�9 1
2
1


2
1
e−9r ≈ 0 

1


= e−r = 
2
� �4�4 1


e−4r 21

2
1
= e−r = = 

2 16


So, the probability that a stray dart will strike your little brother is � � � �
1 1 1

16 6 

≈ 
100


In other words, there’s about a 1% chance he’ll get hit with each dart thrown. 
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Volume by Slices: An Important Example


∞ 
2

Compute Q = e−x dx 
−∞ 

Figure 8: Q = Area under curve e(−x 2). 

This is one of the most important integrals in all of calculus. It is especially important in probability 
and statistics. It’s an improper integral, but don’t let those ∞’s scare you. In this integral, they’re 
actually easier to work with than finite numbers would be. 

To find Q, we will first find a volume of revolution, namely, 

2 

V = volume under e−r (r = x2 + y2) 

We find this volume by the method of shells, which leads to the same integral as in the last problem. 
2

The shell or cylinder under e−r at radius r has circumference 2πr, thickness dr; (see Figure 9). 
2

Therefore dV = e−r 2πrdr. In the range 0 ≤ r ≤ R, � R 
2 2 R 

= −πe−R2 

+ πe−r 2πr dr = −πe−r 

0 

When R →∞, e−R2 → 0, 

0 

∞ 
2 

e−r 2πr dr = π (same as in the darts problem) V = 
0 

7 
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r

width dr

Figure 9: Area of annulus or ring, (2πr)dr. 

Next, we will find V by a second method, the method of slices. Slice the solid along a plane 
where y is fixed. (See Figure 10). Call A(y) the cross-sectional area. Since the thickness is dy (see 
Figure 11), � ∞ 

V = A(y) dy 
−∞ 

A(y)

z

y
x

Figure 10: Slice A(y). 
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y

x

dy

top view

above level of y
in cross-section
of area A(y)

Figure 11: Top view of A(y) slice. 

To compute A(y), note that it is an integral (with respect to dx) 

∞ 
2 

∞ 
2 2 2 

∞ 
2 2 

A(y) = e−r dx = e−x −y dx = e−y e−x dx = e−y Q 
−∞ −∞ −∞ 

Here, we have used r2 = x2 + y2 and 

2 2 2 2 

e−x −y = e−x e−y 

and the fact that y is a constant in the A(y) slice (see Figure 12). In other words, 

∞ 
2 

∞ 
2 2 

ce−x dx = c e−x dx with c = e−y 

−∞ −∞ 

x    -∞

y fixed
ce-x

x    ∞

2

Figure 12: Side view of A(y) slice. 
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It follows that 
∞ ∞ 

2 
∞ 

2 

V = A(y) dy = e−y Q dy = Q e−y dy = Q2 

−∞ −∞ −∞ 

Indeed, � �∞ 
2 

∞ 
2 

Q = e−x dx = e−y dy 
−∞ −∞ 

because the name of the variable does not matter. To conclude the calculation read the equation 
backwards: 

π = V = Q2 = Q = 
√

π⇒ 

We can rewrite Q = 
√

π as �

1 ∞


2 
√

π
e−x dx = 1 

−∞ 

An equivalent rescaled version of this formula (replacing x with x/
√

2σ)is used: 

1 ∞ 
2 /2σ2 

√
2πσ −∞ 

e−x dx = 1 

1 2/2σ2
This formula is central to probability and statistics. The probability distribution e−x on√

2πσ 
−∞ < x < ∞ is known as the normal distribution, and σ > 0 is its standard deviation. 
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