
18.01 Calculus Jason Starr 
Fall 2005 

Lecture 3. September 13, 2005


Homework. Problem Set 1 Part I: (i) and (j).


Practice Problems. Course Reader: 1E­1, 1E­3, 1E­5.


1. Another derivative. Use the 3­step method to compute the derivative of f (x) = 1/
√

3x + 1 
is, 

f �(x − x −3/2/2 .) = 3(3 + 1)

Upshot: Computing derivatives by the definition is too much work to be practical. We need general 
methods to simplify computations. 
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2. The binomial theorem. For a positive integer n, the factorial, 

n! = n× (n− 1) × (n− 2) × · · · × 3 × 2 × 1, 

is the number of ways of arranging n distinct objects in a line. For two positive integers n and k, 
the binomial coefficient, 

n n! n(n− 1) · · · (n− k + 2)(n− k + 1) 
,= = 

k k!(n− k)! 13 · 2 ·k(k − 1) · · ·

is the number of ways to choose a subset of k elements from a collection of n elements. A funda­
mental fact about binomial coefficients is the following, 

n n n+ 1 
+ = . 

k kk − 1 

This is known as Pascal’s formula. This link is to a webpage produced by MathWorld, part of 
Wolfram Research. 

The Binomial Theorem says that for every positive integer n and every pair of numbers a and b, 
(a+ b)n equals, 

n n n a + na n−1b+ · · ·+ 
k

a n−k bk + · · ·+ nabn−1 + b . 

This is proved by mathematical induction. First, the result is very easy when n = 1; it just says 
that (a+ b)1 equals a1 + b1 . Next, make the induction hypothesis that the theorem is true for the 
integer n. The goal is to deduce the theorem for n+ 1, 

(a+ b)n+1 n+1 n+ 1 n+1−k bk = a + (n+ 1)a nb+ · · ·+ 
k

a + · · ·+ (n+ 1)abn + bn+1 . 

By the definition of the (n+ 1)st power of a number, 

(a+ b)n+1 = (a+ b) × (a+ b)n . 

By the induction hypothesis, the second factor can be replaced, 

n n(a+ b)(a+ b)n = (a+ b) a + · · ·+ a n−k bk + · · ·+ bn . 
k 

Multiplying each term in the second factor first by a and then by b gives, 

n an+1−k bk + n an−k bk+1 nan+1 + nanb + . . . + � k + . . . + ab
k+1 

n an+1−kbk + n an−k bk+1 n + bn+1+ anb + . . . + + . . . + nab
kk−1 

Summing in columns gives, 

n n n n nan+1 + (n+ 1)anb + . . . + ( 
k + 

k−1 )an+1−k bk + ( 
k+1 + )an−kbk+1 + . . . + (1 + n)ab

k 
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Using Pascal’s formula, this simplifies to, 

n+1 an+1−k bk + n+1 an−k bk+1 bn+1an+1 + (n + 1)anb + . . . + 
k + . . . + (n + 1)abn + .

k+1 

This proves the theorem for n + 1, assuming the theorem for n. 

Since we proved the theorem for n = 1, and since we also proved that for each integer n, the 
theorem for n implies the theorem for n + 1, the theorem holds for every integer. 

n3. The derivative of x . Let f (x) = xn where n is a positive integer. For every a and every h, 
the binomial theorem gives, 

n nf (a + h) = (a + h)n = a + na n−1h + · · ·+ 
k

a n−k hk + · · ·+ hn . 

Thus, f (a + h) − f (a) equals, 

n n(a + h)n − a = na + a n−k hk + · · ·+ hn . n−1h + · · ·
k 

Thus the difference quotient is, 

f (a + h) − f (a) n−1 n n 
= na +

2 
a n−2h + · · ·+ 

k
a n−k hk−1 + · · ·+ hn−1 . 

h 

Every summand except the first is divisible by h. The limit of such a term as h 0 is 0. Thus, → 

f (a + h) − f (a) n−1lim = na n−1 + 0 + · · ·+ 0 = na . 
h 0 h→

So f �(x) equals nxn−1 . 

3. Linearity. For differentiable functions f (x) and g(x) and for constants b and c, bf (x) + cg(x) 
is differentiable and, 

(bf (x) + cg(x))� = bf �(x) + cg�(x). 

This is often called linearity of the derivative. 

4. The Leibniz rule/Product rule. For differentiable functions f (x) and g(x), the product 
f (x)g(x) is differentiable and, 

(f (x)g(x))� = f �(x)g(x) + f (x)g�(x). 

The crucial observation in proving this is rewriting the increment of f (x)g(x) from a to a + h as, 

f (a+h)g(a+h)−f (a)g(a) = f (a+h)[g(a+h)−g(a)]+f (a+h)g(a)−f (a)g(a) = f (a+h)[g(a+h)−g(a)]+[f (a+h)− 

5. The quotient rule. Let f (x) and g(x) be differentiable functions. If g(a) is nonzero, the 
quotient function f (x)/g(x) is defined and differentiable at a, and, 

(f (x)/g(x))� = [f �(x)g(x) − f (x)g�(x)]/g(x)2 . 
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One way to deduce this formula is to set q(x) = f (x)/g(x) so that f (x) = q(x)g(x), and the apply 
the Leibniz formula to get, 

f �(x) = q�(x)g(x) + q(x)g�(x) = q�(x)g(x) + f (x)g�(x)/g(x). 

Solving for q�(x) gives, 

q�(x) = [f �(x) − f (x)g�(x)/g(x)]/g(x) = [f �(x)g(x) − f (x)g�(x)]/g(x)2 . 

6. Another proof that d(xn)/dx equals nxn−1 . This was mentioned only very briefly. The 
product rule also gives another induction proof that for every positive integer n, d(xn)/dx equals 
nxn−1 . For n = 1, we proved this by hand. Let n be some specific positive integer, and make the 
induction hypothesis that d(xn)/dx equals nxn−1 . The goal is to deduce the formula for n + 1, 

d(xn+1) 
= (n + 1)x n . 

dx 

By the Leibniz rule, 

n+1) d(x × xn)d(x d(x) d(xn) d(xn)n = = x + x = (1)x n + x . 
dx dx dx dx dx 

By the induction hypothesis, the second term can be replaced, 

n n n d(xn+1)
= x + x(nx n−1) = x + nx n = (n + 1)x . 

dx 

Thus the formula for n implies the formula for n + 1. Therefore, by mathematical induction, the

formula holds for every positive integer n.






