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18.01 Calculus Jason Starr 
Fall 2005 

Lecture 23. November 8, 2005 

Homework. Problem Set 6 Part I: (i) and (j); Part II: Problem 2. 

Practice Problems. Course Reader: 4I­1, 4I­4, 4I­6. 

1. Tangent lines to parametric curves. This short section was not explicitly discussed for 
general parametric curves. It was discussed for polar curves, which are a special collection of 
parametric curves. 
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Given a parametric curve,

x = f (t), 
y = g(t), 

what is the slope of the tangent line at (f (a), g(a))? The relevant differentials are, 

dx = f �(t)dt, dy = g�(t)dt. 

If g�(a) is nonzero, then the slope of the tangent line is, 

dy f �(t)dt 
= 
f �(a) 

t=a g (a)

.
(a) =


dx g (t)dt 

In particular, for a function r = r(θ), the associated polar curve is,


x = r(θ) cos(θ), 
y = r(θ) sin(θ) 

Thus the differentials are, 

dx = [r�(θ) cos(θ) − r(θ) sin(θ)]dθ, 
dy = [r�(θ) sin(θ) + r(θ) cos(θ)]dθ. 

Therefore the slope of the tangent line is, 

dy r�(θ) sin(θ) + r(θ) cos(θ) 
= . 

dx r�(θ) cos(θ) − r(θ) sin(θ) 

2. Tangent lines for polar curves. Although the formula above is perfectly correct, it is a bit 
long to remember. There is a slightly different packaging that is much easier to remember. Define 
α to be the angle from the horizontal ray emanating from (x(θ), y(θ)) in the positive x­direction, 
and the tangent line. To be precise, there are two such angles, differing by π. The defining equation 
for α is, 

dy
tan(α) = . 

dx 
And, of course, 

y
tan(θ) = . 

x 
Define ψ to be the difference between α and θ, 

ψ = α − θ. 

The angle addition/subtraction formulas for tan(θ) are, 

tan(φ1 + φ2) = 
tan(φ1) + tan(φ2) tan(φ1) − tan(φ2) 

. 
1 − tan(φ1) tan(φ2) 

, tan(φ1 − φ1) = 
1 + tan(φ1) tan(φ2) 
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Therefore, 

tan(ψ) = tan(α − θ) = 
tan(α) − tan(θ) 

. 
1 + tan(α) tan(θ) 

Substituting in the equations for tan(θ) and tan(α) from above gives, 

tan(ψ) = 
(dy/dx) − (y/x) 

. 
1 + (y/x)(dy/dx) 

To simplify this, imagine multiplying both numerator and denominator by xdx and manipulate 
formally, 

tan(ψ) = 
xdy − ydx

. 
xdx + ydy 

The actual justification of this is a little more involved, but the formal manipulation leads to the 
correct equation. 

To compute the denominator in the expression, differentiate both sides of, 

2 2 2 r = x + y , 

to get, 
2rdr = 2xdx + 2ydy, 

or equivalently, 
xdx + ydy = r(θ)r�(θ)dθ. 

To compute the numerator in the expression, differentiate both sides of, 

y
tan(θ) = , 

x 

to get, 
dy ydx 12sec (θ)dθ = 
x 
− 

x2 
= 

2 
(xdy − ydx). 

x

Now substitute x = r cos(θ) in the denominator to get, 

1 sec2(θ)2sec (θ)dθ = 
r2 cos2(θ)

(xdy − ydx) = (xdy − ydx). 
2r

Cancelling sec2(θ) and multiplying both sides by r2 gives, 

xdy − ydx = r 2dθ. 

Thus the fraction for tan(ψ) is, 

r2dθ 
tan(ψ) = 

xdy − ydx 
= . 

xdx + ydy rr�dθ 
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Simplifying gives, 
tan(ψ) = r(θ)/r�(θ) . 

Example. Consider the cardioid, discussed in recitation, 

r(θ) = a(1 + cos(θ)). 

The formula for ψ is, 
r a(1 + cos(θ)) 1 + cos(θ)

tan(ψ) = = = . 
r� −a sin(θ) − sin(θ) 

To simplify this, write θ = 2(θ/2) and use the double­angle formulas to get, 

1 + cos(2(θ/2)) 1 + (cos2(θ/2) − sin2(θ/2)) 
= . 

− sin(2(θ/2)) −2 sin(θ/2) cos(θ/2) 

Replacing 1 − sin2(θ/2) in the numerator by cos2(θ/2), this simplfies to, 

2 cos2(θ/2) 
−2 sin(θ/2) cos(θ/2) 

= − cot(θ/2). 

Of course there is an identity, 
− cot(u) = tan(u − π/2). 

Altogether, this gives, 
tan(ψ) = − cot(θ/2) = tan(θ/2 − π/2). 

Therefore, 
ψ = 

Since α equals θ + ψ, this gives, 
α = 

In particular, the angle of the tangent line to the cardioid at θ = π/2 is α = π/4. 

(θ − π)/2. 

(3θ − π)/2. 

3. Arc length in polar coordinates. As discussed previously, the formula for arc length of a 
parametric curve is, 

ds = (dx/dt)2 + (dy/dt)2dt. 

In the case of a parametric curve, this becomes a bit simpler. The differentials are, 

dx = (r�(θ) cos(θ) − r(θ) sin(θ))dθ, 
dy = (r�(θ) sin(θ) + r(θ) cos(θ))dθ. 

Squaring gives, 

(dx)2 = ((r�)2 cos2(θ) − 2rr� sin(θ) cos(θ) + r2 sin2(θ))(dθ)2 , 
(dy)2 = ((r�)2 sin2(θ) + 2rr� sin(θ) cos(θ) + r2 cos2(θ))(dθ)2 . 
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Summing down columns gives, 

2(dx)2 + (dy)2 = [(r�)2 + r ](dθ)2 . 

Taking square roots gives the differential element of arc length for a polar curve, 

ds = 
� 

[r�(θ)]2 + [r(θ)]2dθ. 

Example. For the cardioid, 
r(θ) = a(1 + cos(θ)), 

the derivative is, 
r�(θ) = −a sin(θ). 

Thus, 

2 2 2(r�)2 + r = a (1 + cos(θ))2 + (−a sin(θ))2 = a (1 + 2 cos(θ) + cos 2(θ)) + a 2 sin2(θ). 

This simplifies to, 
2a 2(1 + cos(θ)). 

To simplify this further, write θ = 2(θ/2) and use the double­angle formula to get, 

2 2 2 2 22a (1 + cos(2(θ/2))) = 2a (1 + cos 2(θ/2) − sin2(θ/2)) = 2a (2 cos 2(θ/2)) = 4a cos (θ/2). 

Taking square roots gives, 
ds = 

Note, this answer is only correct for −π ≤ θ ≤ π. Outside this range, we might have to take the 
other square root to get a positive number. In particular, the total arc length of the cardioid is, 

2a cos(θ/2). 

� � θ=π 
π s = ds = 2a cos(θ/2)dθ = 2a (2 sin(θ/2)|−π = 2a((2) − (−2)). 

θ=−π 

Simplifying, the total arc length of the cardioid is, 

s = 8a. 

Surface areas of surfaces of revolution can be computed in a similar way. This was only briefly

discussed in lecture. Here is a continuation of the previous problem.


Example. The top half of the cardioid,


r(θ) = a(1 + cos(θ)), 0 ≤ θ ≤ π, 

is revolved about the x­axis to give a fairly good approximation of the surface of an apple. What 
is the surface area of this apple? 
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Since we are revolving about the x­axis, the radius of each slice is y. Therefore the differential 
element of surface area is, 

dA = 2πyds. 

Substituting in y = r(θ) sin(θ) = a(1 + cos(θ)) sin(θ), and substituting in for ds gives, 

dA = 2π[a(1 + cos(θ)) sin(θ)](2a cos(θ/2)dθ). 

To simplify this, substitute both, 

1 + cos(θ) = 2 cos 2(θ/2), 

and, 
sin(θ) = 2 sin(θ/2) cos(θ/2), 

to get, 

4dA = 4πa 2(2 cos 2(θ/2))(2 sin(θ/2) cos(θ/2)) cos(θ/2)dθ = 16πa 2 cos (θ/2) sin(θ/2)dθ. 

Thus the total surface area is, � π 
4A = dA = 16πa 2 cos (θ/2) sin(θ/2)dθ. 

θ=0 

To evaluate this integral, substitute, 

u = cos(θ/2) u(π) = 0, 
du = −(1/2) sin(θ/2)dθ, u(0) = 1 

The new integral is, 

5u

5


u=0 u=1 1 

0 

.
4A = 16πa 2 u (−2du) = 32πa 2 u 4du = 32πa 2 

u=1 u=0 

This evaluates to give the total surface area of the apple, 

A = 32 2/5.πa

5. Area of a region enclosed by a polar curve. What is the area of the planar region enclosed 
by a cardioid? By the same sort of reasoning as for volumes and arc lengths, the differential element 
of area of the triangular region bounded by the rays θ, θ + dθ and the curve r(θ) is, 

r(θ)2 

dA = dθ. 
2 

Thus the area enclosed by a polar curve is, 

A = dA =

� θ=b r(θ)2 

dθ. 
2θ=a 
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In particular, the area enclosed by the cardioid is,


2π a2(1 + cos(θ))2 

A = dθ. 
20 

This expands to give, 
2 � 2π a

1 + 2 cos(θ) + cos(θ)2dθ. 
2 0 

To simplify the last part of the integrand, substitute, 

cos(θ)2 = 
1 + cos(2θ) 

,
2 

to get, 
a2 � 2π 1 + cos(2θ) a2 � 2π 

1 + 2 cos(θ) + dθ = 3 + 4 cos(θ) + cos(2θ)dθ. 
2 0 2 4 0 

Using the Fundamental Theorem of Calculus, this equals, 

2π2 1a
3θ + 4 sin(θ) + sin(2θ)


2 
. 

4
 0 

Evaluating gives, 
A = 3 2/2.πa


