18.01 Calculus Jason Starr
Fall 2005

Lecture 23. November 8, 2005
Homework. Problem Set 6 Part I: (i) and (j); Part II: Problem 2.
Practice Problems. Course Reader: 4I-1, 41-4, 41-6.

1. Tangent lines to parametric curves. This short section was not explicitly discussed for
general parametric curves. It was discussed for polar curves, which are a special collection of
parametric curves.
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Given a parametric curve,

y = g(b),
what is the slope of the tangent line at (f(a), g(a))? The relevant differentials are,

{:r = f(),

de = f'(t)dt, dy = g (t)dt.
If ¢’(a) is nonzero, then the slope of the tangent line is,

dy, . f'(t)dt
%(@) =

In particular, for a function r = r(6), the associated polar curve is,

{x = r(0)cos(h),
y = r(0)sin(0)

Thus the differentials are,

de = [r'(0)cos(8) — r(0)sin(6)]d0,
dy = [r'(0)sin(6)

Therefore the slope of the tangent line is,

dy _ r'(8) sin(8) + r(8) cos(6)
dr  1'(0) cos(f '
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2. Tangent lines for polar curves. Although the formula above is perfectly correct, it is a bit
long to remember. There is a slightly different packaging that is much easier to remember. Define
« to be the angle from the horizontal ray emanating from (z(#),y(6)) in the positive z-direction,
and the tangent line. To be precise, there are two such angles, differing by 7. The defining equation
for « is,

dy
t = —.
an(o) O
And, of course,
Y
tan(f) = =
an(f) -
Define 9 to be the difference between o and 6,
v=a-—20.

The angle addition/subtraction formulas for tan(f) are,

tan(éy + ds) = tan(¢;) + tan(¢,) tan(éy — ¢1) = tan(¢;) — tan(¢s)

1 — tan(¢y) tan(ey)’ 1+ tan(¢y) tan(¢s)”
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Therefore,

tan(a) — tan(0)
tan(y) = tana =) = 3= @)

Substituting in the equations for tan(f) and tan(«) from above gives,
(dy/dx) — (y/x)
tan(v) = )
)= )y )

To simplify this, imagine multiplying both numerator and denominator by xdx and manipulate
formally,

xdy — ydx
t =7
an(y) xdzx + ydy

The actual justification of this is a little more involved, but the formal manipulation leads to the
correct equation.

To compute the denominator in the expression, differentiate both sides of,
r? =%+ yz,

to get,
2rdr = 2xdx + 2ydy,

or equivalently,
zdx + ydy = r(0)r'(0)d6.

To compute the numerator in the expression, differentiate both sides of,

Y

tan(f) = =

an(0) =

to get,
dy ydx 1
2
sec(0)do = P ﬁ(xdy — ydz).
Now substitute & = r cos() in the denominator to get,
1 sec?(0)
2
sec(0)dl = m(mdy —ydz) = = (xdy — ydz).

Cancelling sec?(f) and multiplying both sides by r? gives,
xdy — ydx = r2d6.
Thus the fraction for tan(v)) is,

_xdy —ydx  r?df
xdr+ydy  rr'dd

tan(1))
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Simplifying gives,

tan(y) = [r(6)/(6) |

Example. Consider the cardioid, discussed in recitation,
r(6) = a(1 + cos(h)).

The formula for 1 is,
1 a(l4cos()) 1+ cos(f)
tan(v) = 5 = —asin(f)  —sin(f)

r
To simplify this, write # = 2(6/2) and use the double-angle formulas to get,

1+ cos(2(0/2)) _ 1+ (cos?(6/2) — sin?(0/2))
—sin(2(0/2)) —2sin(0/2) cos(6/2)

Replacing 1 — sin*(6/2) in the numerator by cos?(6/2), this simplfies to,

2cos?(60/2)

—25in(6/2) cos(6/2) = —cot(0/2).

Of course there is an identity,
—cot(u) = tan(u — 7/2).

Altogether, this gives,
tan(y) = — cot(0/2) = tan(6/2 — 7/2).

Therefore,

b =[(0 =m)/2.

Since « equals 6 + 1), this gives,

a= (30 —m)/2.

In particular, the angle of the tangent line to the cardioid at 0 = 7/2 is o = 7/4.

3. Arc length in polar coordinates. As discussed previously, the formula for arc length of a
parametric curve is,

ds = «/(dx/dt)? + (dy/dt)2dt.

In the case of a parametric curve, this becomes a bit simpler. The differentials are,

= ) cos(0) — r(0) sin(0))d0,
dy = (r'(0) sin(f) + r(0) cos(0))db.

Squaring gives,

(dz)? = ((r")% cos?(0) — 2rr’ sin(0) cos(8) + 72 sin?(0))(dh)?,
(dy)? = ((r')?sin*(0) + 2rr' sin(6) cos(#) + r% cos?(9))(dh)>.
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Summing down columns gives,
(dz)* + (dy)* = [(r')* + r*)(d0)*.

Taking square roots gives the differential element of arc length for a polar curve,

ds = /IPOF + rO)Fds.

Example. For the cardioid,
r(6) = a(l + cos(0)),

the derivative is,
r'(0) = —asin(h).

Thus,
(") + 7% = a*(1 + cos(#))? + (—asin(6))* = a*(1 + 2 cos(#) + cos*(6)) + a*sin?(h).

This simplifies to,
2a*(1 + cos(6)).

To simplify this further, write # = 2(6/2) and use the double-angle formula to get,
2a*(1 + cos(2(6/2))) = 2a*(1 + cos®(6/2) — sin*(6/2)) = 2a*(2 cos*(0/2)) = 4a® cos*(0/2).

Taking square roots gives,

ds = 2acos(0/2).

Note, this answer is only correct for —m < § < m. Outside this range, we might have to take the
other square root to get a positive number. In particular, the total arc length of the cardioid is,

0=m
s = /ds = / 2a cos(0/2)d0 = 2a (2sin(0/2)]" = 2a((2) — (—2)).
O=—m
Simplifying, the total arc length of the cardioid is,

s = [8a.]

Surface areas of surfaces of revolution can be computed in a similar way. This was only briefly
discussed in lecture. Here is a continuation of the previous problem.

Example. The top half of the cardioid,
r(0) = a(l+cos(F)), 0<60<m,

is revolved about the x-axis to give a fairly good approximation of the surface of an apple. What
is the surface area of this apple?
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Since we are revolving about the x-axis, the radius of each slice is y. Therefore the differential
element of surface area is,

dA = 2myds.
Substituting in y = r(0) sin(d) = a(1 + cos(#)) sin(#), and substituting in for ds gives,

dA = 27[a(1 + cos(6)) sin(0)](2a cos(0/2)dh).
To simplify this, substitute both,
1+ cos(#) = 2cos?(0/2),

and,
sin(f) = 2sin(6/2) cos(6/2),

to get,
dA = 4ma®(2cos?(0/2))(2sin(6/2) cos(6/2)) cos(0/2)dd = 16ma® cos*(0/2) sin(6/2)d6.

Thus the total surface area is,

A= / dA = / 16ma cos’ (6/2) sin(8,/2)db.
0=0
To evaluate this integral, substitute,

u = cos(6/2)
du = —(1/2)sin(0/2)db,

u(m) =0,
u(0) =1

The new integral is,

u=0
A = 167a? / u*(—2du) = 32ma® /

=1 u=0

u=1 511

utdu = 32ra® (%

0

This evaluates to give the total surface area of the apple,

A= 32ma?/5.

5. Area of a region enclosed by a polar curve. What is the area of the planar region enclosed
by a cardioid? By the same sort of reasoning as for volumes and arc lengths, the differential element
of area of the triangular region bounded by the rays 6, § + df and the curve r(6) is,

r(6)?

= Td@.

dA

Thus the area enclosed by a polar curve is,

0=b 2
A:/dA:/ ﬂd@.
6=a 2
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In particular, the area enclosed by the cardioid is,

2r 2 2
A :/ a*(1+ cos(f)) 40,
0

2

This expands to give,
21
% / 1+ 2cos() + cos(6)?d.
0

To simplify the last part of the integrand, substitute,

1 + cos(26)

cos(6)? = 5 ,

to get,

2 1 20 2
— / 1+ 2cos(f) + i C;)S< )d = az / 3 + 4 cos(f) + cos(26)db.
0

Using the Fundamental Theorem of Calculus, this equals,

2 27

“Z (39 + 4sin(6) + %sm(w)

0

Evaluating gives,

A = 3ma?/2.




