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18.01 Calculus Jason Starr 
Fall 2005 

Lecture 20. November 1, 2005 

Practice Problems. Course Reader: 4C­2, 4C­6, 4D­1, 4D­4, 4D­8. 

1. Average values. Given a function f (x) defined on some interval [a, b], what is the average 
value of f (x)? A reasonable first approximation is to choose a finite collection of points from [a, b] 
and compute the average value over those points. Break [a, b] into a union of n subintervals of 
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Multiplying and dividing by Δx gives, 
n

1 � 
Average ≈ y∗Δx. 

nΔx k 

k=1 

Now nΔx equals n(a − b)/n, which is a − b. So the average value is, 

n
1 � 

Average ≈ y∗Δx. 
b − a k 

k=1 

The sum is a Riemann sum. To get better approximations to the true average, increase the number 
of points n at which f (x) is “sampled”. In the limit, this gives the true average, 

n
1 � � b

Average = lim y∗Δx = f (x)dx/(b − a).
ab − a n→∞ 

k=1 

k 

Example. Under ideal conditions, a wire­producing machine produces wire of uniform radius r0. 
Because of small vibrations in the machine, the actual radius of the wire varies as a function of the 
length, 

r(x) = r0 + A cos(ωx). 

The quantity A is much smaller than r0. What is the average radius of the wire? 

Because the variation is periodic, the average value over any number of periods equals the average 
value of one period. In other words, compute the average for the interval 0 ≤ x ≤ 2π/ω. The 
length of this interval is 2π/ω. Thus the average value is, � 2π/ω 1 

Average = r0 + A cos(ωx)dx. 
(2π/ω) 0 

Using the Fundamental Theorem of Calculus, this equals, 

1 2π/ω 

(2π/ω) 
(r0x + (A/ω) sin(ωx)|0 . 

This evaluates to, 
1 

r0(2π/ω) = r0. 
(2π/ω) 

Thus, although the radius varies and does not usually equal its ideal value r0, the average value is 
indeed, 

Average = r0. 

2. Average values: non­uniform distribution. It often happens that the average value of f (x) is 
desired in a situation where the values f (x) are not all uniformly likely. Typically, the probability 
that x has value in the range from x0 to x0 + Δx is approximately, 

Prob(x0 ≤ x ≤ x0 + Δx) ≈ ρ(x0)Δx, 
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for some nonnegative continuous function ρ(x). The function ρ(x) is called a probability distribution. 
Assuming this approximation becomes arbitrarily good as the length Δx approaches zero, the exact 
probability that x has value in the range x0 to x1 is, 

x1 

Prob(x0 ≤ x ≤ x1) = ρ(x)dx. 
x0 

In particular, because x must take value somewhere in the interval [a, b], the total probability is 1. 
In other words, � b 

ρ(x)dx = 1. 
a 

This is called the normalization condition. 

The average value is computed as before. But this time, each value y∗ = f (x∗ 
k ) is weighted by the k 

approximate probability that x takes value in the kth interval, ρ(x∗ 
k )Δx. This gives, 

n

Average ≈ f (xk )
∗ρ(xk )

∗Δx. 
k=1 

In the limit as n goes to ∞, this gives the exact average, � b 

Average = f (x)ρ(x)dx. 
a 

It must be noted, the probability distribution ρ(x) often does not satisfy the normalization condi­
tion. In this case, the formula above is wrong. But it is easily correct, 

( 
� b 

a f (x)ρ(x)dx)/( 
� b 

a ρ(x)dx).Average = 

Example. A particle is fired through a slit and strikes a screen on the other side. Measuring the 
position on the screen so that the origin is the closest point on the screen to the slit, the probability 
distribution is empirically observed to be, 

ρ(x) = Ce−x2/2σ2 
, 

where σ is a constant determining the “width” of the probability distribution, and C is an unde­

termined normalization constant. What is the average distance of the particle from the center of

the screen? Assume the particle lies in an interval [−R, R], where R is very large.

Remark. This differs from the formula given in lecture, which was Ce−x2/2σ for a particular choice

of σ. The formula given here is more “standard”. I apologize for any confusion.


The distance function is, � 

f (x) = |x| = 
−x, 
x, 

x < 0 
x ≥ 0 
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According to the formula, the average value is, � R � R 

( f (x)ρ(x)dx)/( ρ(x)dx). 
−R −R 

The numerator is, � R 

|x|Ce−x2/2σ2 
dx. 

−R 

It is easiest to compute this by breaking it into a sum of 2 integrals, � 0 � R 

(−x)Ce−x2/2σ2 
dx + (+x)Ce−x2/2σ2 

dx. 
0−R 

Make the substitution u = −x2/2σ2 , du = (−x/σ2)dx to reduce this to, � 0 � −R2/2σ2 � 0 

Ce u(σ2du) + Ce u(−σ2du) = 2 Cσ2 e udu. 
−R2/2σ2 0 −R2/2σ2 

Using the Fundamental Theorem of Calculus, this equals, 

u 02Cσ2 (e −R2/2Σ2 = 2Cσ2(1 − e−R2/2Σ2 
).| 

As R becomes large, the quantity e−R2/2Σ2 
becomes vanishingly small. Thus, in the limit as R 

tends to ∞, the numerator equals, � R 

lim |x|Ce−x2/2σ2 
dx = 2Cσ2 . 

R→∞ −R 

Unfortunately, this is not an answer, because the normalization constant C is unknown. The 
normalization condition is that, � R 

C lim e−x2/2σ2 
dx = 1. 

R→∞ −R 

Simplify this by making the substitution, u = x/σ, du = dx/σ, and Q = R/σ to get, � R/σ � Q 

C lim e−u2/2σdu = Cσ lim e−u2/2du. 
R→∞ −R/σ Q→∞ −Q 

Notice the limit, � Q 

lim e−u2/2du, 
Q→∞ −Q 
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does not depend on σ. It is simply some number. Denoting this number by 1/C1, the normalization 
condition is, 

Cσ/C1 = 1. 

The solution is that C = C1/σ. Plugging this into the formula above, the average distance is, 

Average distance = 2C1σ, 

where, 
Q 

1/C1 = lim e−u2/2du. 
Q→∞ −Q 

There is a beautiful argument that, 
C1 = 1/

√
2π. 

Unfortunately, we cannot yet prove this. Taking it as true gives the final answer, 

Average distance = 

3. Volumes of solids of revolution: the shell method. An alternative to the disk and washer 
method is the shell method. A shell is the region between 2 cylinders of the same height. If the 
average radius of the cylinders is r, if the width of the region is w and if the height of the cylinders 
is h, then the approximate volume of the shell is, 

2
√

2π.σ/

Volume ≈= Circumference × height × width = 2πrhw. 

Take the plane region bounded by x = a, x = b, the x­axis and the curve y = f (x). Revolve this 
region about the y­axis. (Please note: In the disk and washer method, the region was revolved 
about the x­axis.) To compute the corresponding volume, approximate the region obtained from 
x to x + dx as a shell. The radius of the shell is x. The height of the shell is y = f (x). The width 
of the shell is dx. Therefore the differential element of volume is, 

dV = (2πx)(f (x))dx. 

Integrating gives the volume, � x=b 

V = 2πxf (x)dx. 
x=a 

Example. The dog dish revisited. The main part of a dog dish is a solid of revolution whose 
radial cross­section is a triangle of height H whose base has inner radius Ri and outer radius Ro. 
Find the volume of material used to make the dog dish. 

The volume was computed using the washer method. This time it will be computed using the shell 
method. The triangular region is the union of two regions. The first region is bounded by x = Ri, 
x = (Ri + Ro)/2, the x­axis, and the line segment, 

2H 
y = 

Ro − Ri 
(x − Ri). 
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The second region is bounded by x = (Ri + Ro)/2, x = Ro, the x­axis, and the line segment, 

2H 
y = 

Ro − Ri 
(Ro − x). 

By the shell method, the volume of the solid of revolution obtained from the first region is, 

x=(Ri +Ro)/2 2H 4πH x=(Ri+Ro)/2 

V1 = (2πx) 
Ro − Ri 

(x − Ri)dx = 
Ro − Ri x=Ri 

x 2 − Rixdx. 
x=Ri 

This becomes simpler to deal with after the substitution u = −x + (Ri + Ro)/2, du = −dx. The 
new integral is, � u=04πH 

V1 = 
Ro − Ri u=(Ro−Ri)/2 

(−u + (Ro + Ri)/2)(−u + (Ro − Ri)/2)(−du) 

4πH u=(Ro−Ri )/2 

= 
Ro − Ri u=0 

(−u + (Ro + Ri)/2)(−u + (Ro − Ri)/2)du. 

By the shell method, the volume of the solid of revolution obtained from the second region is, � x=Ro 
� x=Ro2H 4πH 

V2 = (2πx) 
Ro − Ri 

(Ro − x)dx = 
x=(Ro +Ri)/2 Ro − Ri x=(Ro+Ri )/2 

x(Ro − x)dx. 

Believe it or not, this will be simpler to deal with after the substitution u = x − (Ro + Ri)/2, 
du = dx. The new integral is 

4πH u=(Ro−Ri)/2 

V2 = 
Ro − Ri u=0 

(u + (Ro + Ri)/2)(−u + (Ro − Ri)/2)du. 

Notice how similar are the integrals for V1 and V2. They have the same fraction in front of the 
integral, and they have the same limits of integration. Thus, the sum of the 2 volumes is, 

V = V1 + V2 = 

4πH u=(Ro−Ri )/2 

Ro − Ri u=0 
[(−u+(Ro+Ri)/2)(−u+(Ro−Ri)/2)]+[(u+(Ro+Ri)/2)(−u+(Ro−Ri)/2)]du. 

Since both terms in the integrand have the factor (−u + (Ro − Ri)/2), this can be factored to give, 

4πH u=(Ro−Ri)/2 

V = 
Ro − Ri u=0 

[(−u + (Ro + Ri)/2) + (u + (Ro + Ri)/2)](−u + (Ro − Ri)/2)du. 

Of course the term in square brackets is simply Ro + Ri. So the total volume is, 

4πH u=(Ro −Ri)/2 

V = 
Ro − Ri u=0 

(Ro + Ri)(−u + (Ro − Ri)/2)du. 
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By the Fundamental Theorem of Calculus, this equals,


(Ro−Ri)/224πH 
Ro − Ri 

+

(Ro − Ri)u 

(Ro + Ri) 
−u

. 
2 2 0 

This evaluates to, 
4πH (Ro − Ri)

2 

(Ro + Ri) . 
8Ro − Ri 

This simplifies to give, 

V = πH(Ro − Ri)(Ro + Ri)/2 = π(R2 
o − R2 

i ) 2.H/

This is precisely the same answer as computed using the washer method. Please observe though, 
how much more effort was required for the shell method. The lesson is, if you have an alternative 
between the disk method and the shell method, consider carefully which method requires less effort 
before committing to one or the other. 


