18.01 Calculus Jason Starr
Fall 2005

Lecture 18. October 25, 2005
Homework. Problem Set 5 Part I: (c).
Practice Problems. Course Reader: 3G-1, 3G-2, 3G-4, 3G-5.

1. Approximating Riemann integrals. Often, there is no simpler expression for the antideriva-
tive than the expression given by the Fundamental Theorem of Calculus. In such cases, the simplest
method to compute a Riemann integral is to use the definition. However, this is not necessarily the
most efficient method. Often trapezoids or segments under a parabola give a better approximation
to the Riemann integral than do vertical strips.
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2. The trapezoid rule. The problem is to find an approximation of the Riemann integral,

b
I:/ydx

for a function y(z) defined on the interval [a, b]. Choose a partition of the interval [a, b] into n equal
subintervals. The points of this partition are,
(b—a)k b—a

T, =a+ ——, Ax,=
n

The values of these points are,
Ye = [f(zk).

The Riemann sum using always the left endpoint is,

I = Z Yp—1Azp.
k=1

The Riemann sum using always the right endpoint is,

I, = Z YrAxy,.
k=1

The average of the two is,

Itrap = Z U 12+ I Az,
k=1
This is usually a better approximation than either of the two approximations individually. Part
of the reason is that the term (yx_1 + yx)Axy/2 is the area of the trapezoid containing the points
(2k-1,0), (Tg—1,Yk-1), (2x,0) and (xy,yx). In particular, if the graph of y = f(x) is a line, this
trapezoid is precisely the region between the graph and the z-axis over the interval [z)_1, zx]. Thus,
the approximation above gives the exact integral for linear integrands.

Writing out the sum gives,

b—a
Liap = 7((90 +y1)+ (i +y2) + (Yo +ys) + -+ (Yn2 + Yn-1) + Wn1 +yn))-

Gathering like terms, this reduces to,

Lsap = | (b= a)(¥o + 291 + 252 + -+ + 2yn_1 + Ya) /21,

3. Simpson’s rule. Again partition the interval [a, b] into n equal subintervals. For reasons that
will become apparent, n must be even. So let n = 2m where m is a positive integer. Again define,
(b—a)k (b—a)k b—a b—a

r,=a+-———=a+—"—, Ax, = = .
n 2m n 2m
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Pair off the intervals as ([xg, z1], [z1, 22]), ([x2, 23], [13, 24]), etc. Thus the I*' pair of intervals is,

([$2l—2, 5(72l—1]7 [I2l—17 $2l])-

The idea is to approximate the area of the graph over the pair of intervals by the area under the
unique parabola containing the 3 points (92, yYo—2), (To—1, Y2r—1), (Ter, y2;). For notation’s sake,
denote 2l — 1 by k. Thus the 3 points are (zx—1,Yk-1), (Tk, Yx), and (Tg41,Ypr1) (this is slightly
more symmetric).

The first problem is to find the equation of this parabola. Since the parabola contains the point
(g, Yr), it has the equation,

y= A(x — 2)* + B(x — z) + yr,
Plugging in x = x;,_1 and x = x4, and using that x,,; — xp = v, — rp_1 equals Ax,
Yka1 = A(Am)2 + B(Az) + yx,

Yp_1 = A(A:c)z — B(Ax) + yg.

Summing the two sides gives,
Y1 + Y1 = 24(Az)? + 2y

Solving for A gives,
1
= — 1 — 2 .
2(Zxx)2(yk 1 yk'+_yk+l)

Similarly, taking the difference of the two sides gives,
Yk+1 — Ye—1 = 2B(Ax).

Solving for B gives,
1
m(yk+1 — Yr-1)-

Thus, the equation of the parabola passing through (xy_1,yk—1), (T, yx) and (Tri1, Yes1) 1S,

y=A(x — zx)* + Bz — 2x)* + wi,
A = (yr—1 — 2y + Y1) /2(Az)?,
B = (Yr1 — Yk—1)/2(Ax).

The next problem is to compute the area under the parabola from x = z;_; to x = z;1. Thisis a
straightforward application of the Fundamental Theorem of Calculus,

Tp41

s 2 A 3, B 2
A(.CE—IL’k) +B($—£L’k)+ykdl': E(IB—.%]C) +—<Qf—$k) +yk(a:—xk)

Tr—1 2 Tp_1
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Plugging in and using that xx,1 — xx = xx — xx_1 equals Az, this is,

2A
?(AQJ)?’ + 2y, (Ax).
Substituting in the formula for A and simplifying, this is,
Ax Ax Ax
?(yk—l — 22Uk + Yrt1) + ?(6%) = ?(yk—l + 4Yk + Yry1)-

Back-substituting 2/ — 1 for k and (b— a)/2m for Ax, the approximate area for the pair of intervals
[To1-2, Ty o] and [rg_1, zy] is,
b—a
Al = ——(yar—2 + 4yar1 + yar).
m
Finally, summing this contribution over each choice of [ gives the Simpson’s rule approximation,

m

Z(y2z—2 + 4yar—1 + yu)-
=1

b—a

om

]Sirnpson =

Writing out the sum gives,

Isimpson = %_—ma((yo + 4y +y2) + (y2 + 4ys + ya) + (Yo + 4ys + yo)+
ot (Yam—a + WWom—3 + Yam—2) + (Y2m—2 + Y2m—1 + Yom))-

Gathering like terms, Isimpson reduces to,

(b—a)(yo + 4y1 + 2y2 + 4ys + 2ya + 4ys + 2ys + - - + 4Yom—3 + 2Y2m—2 + 4Yom—1 + Yom)/6m.

Example. Approximate In(2) using a partition into 4 equal subintervals with the Trapezoid Rule
and with Simpson’s Rule.

The value In(2) equals the Riemann integral,

2
1

/ —dzx.
LT

The points of the partition are zy = 4/4,2y = 5/4,29 = 6/4,23 = 7/4 and x4 = 8/4. The
corresponding values are yo = 4/4,y; = 4/5,yo = 4/6,y3 = 4/7,y4 = 4/8. Thus the Trapezoid Rule
gives,

b—a 1.4 4 4 4 4 1171
Loy = —— 2 2 2 =—(-4+2-4+2-42-4+-) = —— =~ 0.6970
trap on (Yo + 2y1 + 2y2 + 2y3 + ya) 8<4+ 5+ 6+ 7+8) 1680
For Simpson’s Rule, because n equals 4, m equals 2. Thus,

b—a 1 4 4 4 4 4 1747
Isimpson = —— 4 2 4 = —(—4+4-—+2— +4-— V=" ~
Simp o (Wo 4y + 292 + dys +ya) = 5 () Hdz + 20 Hdo 4 o) = s

1 5 T3 0.6933
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According to a calculator, the true value is,

In(2) = 0.6931 10

Note that trapezoids overestimate the area, because 1/z is concave up. The approximating parabo-
las cross the graph of y = 1/z, thus the underestimation to the left of (xy,yx) somewhat cancels
the overestimation to the right of (xy,yx), explaining the better approximation.

4. One review problem. This is a related rates review problem for Exam 3. A particle moves
with constant speed 3 on the parabola y = 22. The particle is moving away from the origin. What
is the rate-of-change of the distance from the origin to the particle when the distance equals 2v/57?

The independent variable is time, t. The dependent variables are the z-coordinate of the particle,
x(t), the y-coordinate of the particle, y(t), and the distance L(t) from the particle to (0,0). The
constant is the speed s = 3 of the particle. The constraints are that the point moves on the

parabola,

.2
y—fL‘,

and the Pythagorean theorem,
L? = 2% + 42

s = d_x2+ @2
dt dt )

This plays the role of the “known rate-of-change” in a typical related rates problem.

Also, since the speed is constant,

It is simplest to relate the dependent variables y and L to x. The first step is to determine x at
the moment when L equals 2v/5. Plugging y = 22 into the equation for L? gives,
LP =2+ =2 + (%) = 2* + 2.
At the instant when L equals 2v/5, L? equals 20. Thus, at that moment,
ot 4 2? = 20.
This factors as,
(2% —4)(z* +5) = 0.

Since x? is nonnegative, the solution is #2 = 4. Assuming the particle is in the first quadrant (this
is not specified in the problem), x is positive. The other choice leads to a symmetric problem and
the same final answer. So, at the moment when L equals 2v/5, x equals 2.

The next step is to determine the “known rate-of-change”, dx/dt at the moment when L equals
2v/5. Implicitly differentiating the equation y = 22 gives,
dy dx

= 9

dt dt’
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Substituting this into the equation for s? gives,

dz\ 2 de\ 2 de\ 2
2 [ ax Ty _ 2y [ 4T
s _(dt) +<2xdt) (1+4x)<dt) :

Since s is known to be 3, and x is known to be 2, this equation can be solved for dz/dt,

A

dt ) — 1+4(2)2 17
Since the particle is in the first quadrant and moving away from the origin, dz/dt is positive. So,
at the moment when L equals 2v/5, dz/dt equals 3/+/17.

The final step is to compute dL/dt at the moment when L equals 2v/5. Implicitly differentiating
the equation,
L? = 2% +2*,
gives,
dL dx

- = 3_
2L 7 (22 + 4x )dt‘

Plugging in for L, z and dx/dt gives,

2(2\/5)% — (202) + 4(2)3)\/%_7.

Solving gives,

dL

— = 27/+/85|.
dt /5B

at the moment when L equals 2/5.



