
18.01 Calculus Jason Starr 
Fall 2005 

Lecture 18. October 25, 2005


Homework. Problem Set 5 Part I: (c).


Practice Problems. Course Reader: 3G­1, 3G­2, 3G­4, 3G­5.


1. Approximating Riemann integrals. Often, there is no simpler expression for the antideriva­
tive than the expression given by the Fundamental Theorem of Calculus. In such cases, the simplest 
method to compute a Riemann integral is to use the definition. However, this is not necessarily the 
most efficient method. Often trapezoids or segments under a parabola give a better approximation 
to the Riemann integral than do vertical strips. 
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2. The trapezoid rule. The problem is to find an approximation of the Riemann integral,
� b 

I = ydx 
a 

for a function y(x) defined on the interval [a, b]. Choose a partition of the interval [a, b] into n equal 
subintervals. The points of this partition are, 

b− a 
xk = a+

(b− a)k
, Δxk = . 

n	 n 

The values of these points are, 
yk = f(xk ). 

The Riemann sum using always the left endpoint is, 

n

Il = yk−1Δxk. 
k=1 

The Riemann sum using always the right endpoint is, 

n

Ir = yk Δxk . 
k=1 

The average of the two is, 
n

Itrap = 
yk−1 + yk 

Δxk . 
2 

k=1 

This is usually a better approximation than either of the two approximations individually. Part 
of the reason is that the term (yk−1 + yk )Δxk /2 is the area of the trapezoid containing the points 
(xk−1, 0), (xk−1, yk−1), (xk , 0) and (xk , yk ). In particular, if the graph of y = f(x) is a line, this 
trapezoid is precisely the region between the graph and the x­axis over the interval [xk−1, xk ]. Thus, 
the approximation above gives the exact integral for linear integrands. 

Writing out the sum gives, 

Itrap = 
b− a 

((y0 + y1) + (y1 + y2) + (y2 + y3) + · · ·+ (yn−2 + yn−1) + (yn−1 + yn)). 
2n 

Gathering like terms, this reduces to, 

I = (b− a)(y0 y1 y2 + yn−1 + yn)/2n.trap + 2 + 2 · · ·+ 2

3. Simpson’s rule. Again partition the interval [a, b] into n equal subintervals. For reasons that

will become apparent, n must be even. So let n = 2m where m is a positive integer. Again define,


(b− a)k	 (b− a)k b− a b− a 
xk = a+ = a+ , Δxk = = . 

n	 2m n 2m 
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Pair off the intervals as ([x0, x1], [x1, x2]), ([x2, x3], [x3, x4]), etc. Thus the lth pair of intervals is, 

([x2l−2, x2l−1], [x2l−1, x2l]). 

The idea is to approximate the area of the graph over the pair of intervals by the area under the 
unique parabola containing the 3 points (x2l−2, y2l−2), (x2l−1, y2l−1), (x2l, y2l). For notation’s sake, 
denote 2l − 1 by k. Thus the 3 points are (xk−1, yk−1), (xk , yk ), and (xk+1, yk+1) (this is slightly 
more symmetric). 

The first problem is to find the equation of this parabola. Since the parabola contains the point 
(xk , yk ), it has the equation, 

y = A(x− xk )
2 + B(x− xk ) + yk , 

Plugging in x = xk−1 and x = xk+1, and using that xk+1 − xk = xk − xk−1 equals Δx, 

yk+1 = A(Δx)2 + B(Δx) + yk , 

yk−1 = A(Δx)2 − B(Δx) + yk. 

Summing the two sides gives, 
yk+1 + yk−1 = 2A(Δx)2 + 2yk . 

Solving for A gives, 
1 

A = 
2(Δx)2 

(yk−1 − 2yk + yk+1). 

Similarly, taking the difference of the two sides gives, 

yk+1 − yk−1 = 2B(Δx). 

Solving for B gives, 
1 

B = 
2(Δx)

(yk+1 − yk−1). 

Thus, the equation of the parabola passing through (xk−1, yk−1), (xk , yk ) and (xk+1, yk+1) is, 

y = A(x− xk )
2 + B(x− xk )

2 + yk , 

A yk−1 − 2yk + yk+1)/ x)2 , 

B yk+1 − yk−1)/ x). 

= ( 2(Δ

= ( 2(Δ

The next problem is to compute the area under the parabola from x = xk−1 to x = xk+1. This is a 
straightforward application of the Fundamental Theorem of Calculus, 

xk+1 A B 
A(x− xk )

2 + B(x− xk ) + yk dx = (x− xk )
3 + (x− xk )

2 + yk (x− xk )
3 2 

xk+1 

. 
xk−1 xk−1 
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Plugging in and using that xk+1 − xk = xk − xk−1 equals Δx, this is, 

2A 
(Δx)3 + 2yk (Δx). 

3 

Substituting in the formula for A and simplifying, this is, 

Δx Δx Δx 
(yk−1 − 2yk + yk+1) + (6yk ) = (yk−1 + 4yk + yk+1). 

3 3 3 

Back­substituting 2l−1 for k and (b−a)/2m for Δx, the approximate area for the pair of intervals 
[x2l−2, x2l−2] and [x2l−1, x2l] is, 

ΔIl = 
b− a 

(y2l−2 + 4y2l−1 + y2l). 
6m 

Finally, summing this contribution over each choice of l gives the Simpson’s rule approximation, 

m
b− a � 

ISimpson = (y2l−2 + 4y2l−1 + y2l). 
6m 

l=1 

Writing out the sum gives, 

b−aISimpson = ((y0 + 4y1 + y2) + (y2 + 4y3 + y4) + (y4 + 4y5 + y6)+6m 
· · ·+ (y2m−4 + 4y2m−3 + y2m−2) + (y2m−2 + 4y2m−1 + y2m)). 

Gathering like terms, ISimpson reduces to, 

(b− a)(y0 y1 y2 y3 y4 y5 y6 + y2m−3 y2m−2 y2m−1 + y2m)/6m.+ 4 + 2 + 4 + 2 + 4 + 2 · · ·+ 4 + 2 + 4

Example. Approximate ln(2) using a partition into 4 equal subintervals with the Trapezoid Rule 
and with Simpson’s Rule. 

The value ln(2) equals the Riemann integral, � 2 1 
dx. 

1 x 

The points of the partition are x0 = 4/4, x1 = 5/4, x2 = 6/4, x3 = 7/4 and x4 = 8/4. The 
corresponding values are y0 = 4/4, y1 = 4/5, y2 = 4/6, y3 = 4/7, y4 = 4/8. Thus the Trapezoid Rule 
gives, 

1 4 4 4 4 4 1171 
Itrap = 

b− a 
(y0 + 2y1 + 2y2 + 2y3 + y4) = ( + 2 + 2 + 2 + ) =

1680 
≈

2n 8 4 5 6 7 8 

For Simpson’s Rule, because n equals 4, m equals 2. Thus, 

1 4 4 4 4 4 1747 

0.6970 

ISimpson = 
b− a 

(y0 + 4y1 + 2y2 + 4y3 + y4) = ( + 4 + 2 + 4 + ) =
2520 

≈
6m 12 4 5 6 7 8 

0.6933 
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According to a calculator, the true value is, 

ln(2) = 

Note that trapezoids overestimate the area, because 1/x is concave up. The approximating parabo­
las cross the graph of y = 1/x, thus the underestimation to the left of (xk , yk ) somewhat cancels 
the overestimation to the right of (xk , yk ), explaining the better approximation. 

0. ± 10−46931 

4. One review problem. This is a related rates review problem for Exam 3. A particle moves 
with constant speed 3 on the parabola y = x2 . The particle is moving away from the origin. What 
is the rate­of­change of the distance from the origin to the particle when the distance equals 2

√
5? 

The independent variable is time, t. The dependent variables are the x­coordinate of the particle, 
x(t), the y­coordinate of the particle, y(t), and the distance L(t) from the particle to (0, 0). The 
constant is the speed s = 3 of the particle. The constraints are that the point moves on the 
parabola, 

2 y = x , 

and the Pythagorean theorem, 
2 2L2 = x + y . 

Also, since the speed is constant, � �2 � �2
dx dy2 s = + . 
dt dt 

This plays the role of the “known rate­of­change” in a typical related rates problem.


It is simplest to relate the dependent variables y and L to x. The first step is to determine x at

2the moment when L equals 2

√
5. Plugging y = x into the equation for L2 gives, 

2 2 2 2)2 2 4L2 = x + y = x + (x = x + x . 

At the instant when L equals 2
√

5, L2 equals 20. Thus, at that moment, 

4 x + x 2 = 20. 

This factors as, 
2(x 2 − 4)(x + 5) = 0. 

Since x2 is nonnegative, the solution is x2 = 4. Assuming the particle is in the first quadrant (this 
is not specified in the problem), x is positive. The other choice leads to a symmetric problem and 
the same final answer. So, at the moment when L equals 2

√
5, x equals 2. 

The next step is to determine the “known rate­of­change”, dx/dt at the moment when L equals 
2
√

5. Implicitly differentiating the equation y = x2 gives, 

dy dx 
= 2x . 

dt dt 
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Substituting this into the equation for s2 gives, � �2 � �2 � �2
dx dx dx2 s = + 2x = (1 + 4x 2) . 
dt dt dt 

Since s is known to be 3, and x is known to be 2, this equation can be solved for dx/dt, � �2
dx 32 9 

= = . 
dt 1 + 4(2)2 17 

Since the particle is in the first quadrant and moving away from the origin, dx/dt is positive. So, 
at the moment when L equals 2

√
5, dx/dt equals 3/

√
17. 

The final step is to compute dL/dt at the moment when L equals 2
√

5. Implicitly differentiating 
the equation, 

2 4L2 = x + x , 

gives, 
dL dx 

2L = (2x + 4x 3) . 
dt dt 

Plugging in for L, x and dx/dt gives, 

dL 3 
2(2
√

5) = (2(2) + 4(2)3) √
17 
. 

dt 

Solving gives, 
dL 
dt 

= 

at the moment when L equals 2
√

5. 

27/
√

85 . 


