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18.01 Calculus Jason Starr 
Fall 2005 

Lecture 17. October 21, 2005


Homework. Problem Set 5 Part I: (a) and (b); Part II: Problem 1.


Practice Problems. Course Reader: 3F­1, 3F­2, 3F­4, 3F­8.


1. Ordinary differential equations. An ordinary differential equation is an equation involving 
a single independent variable x together with a dependent variable y and its derivatives dk y/dxk , 

dy d2y dk y
G x, y, 

dx
, 
dx2 

, . . . , = 0. 
dxk 

The largest k for which dk y/dxk occurs in the equation is called order of the differential equation. 

Examples. Here are examples of ordinary differential equations. 

(i) The ordinary differential equation, 

y − sin(x 2) = 0, 

has order 0, because no derivatives of y actually occur in the equation. It has a unique (and rather 
trivial) solution, 

y = sin(x 2). 

Because the solution is unique, it depends on 0 parameters (and the order is 0). 

(ii) The ordinary differential equation, 

dy 1 
= 0,

dx 
− 
x + 1 

has order 1 because dy/dx occurs and no higher derivatives occur. Every solution is an antiderivative 
of 1/x + 1, 

1 
y = dx = ln(|x + 1 ) + C, 

x + 1 
|

Notice the solution depends on 1 parameter, C. And the order is 1. 

(iii) The ordinary differential equation, 

d2y 
+ ω2 y = 0,

dx2 
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has order 2. The general solution was found in Problem Set 2, Problem 4, 

y = A cos(ωx) + B sin(ωx). 

The solution depends on 2 parameters, A and B. And the order is 2. 

A kth(iv) The previous equation was one particular linear ordinary differential equation. order 
linear ordinary differential equation has the form, 

dk y dk−1y dy
+ a1(x) + a0(x)y = b(x),ak (x) 

dxk 
+ ak−1(x) 

dxk−1 
+ · · ·

dx 

for functions ak (x), . . . , a0(x), b(x). If b(x) is zero, the equation is homogeneous. Otherwise it 
is inhomogeneous. Very important is the case when all the functions ak (x), . . . , a0(x), b(x) are 
constant. Then the differential equation is called constant coefficient. The solution of constant 
coefficient linear ordinary differential equations is a main focus of Math 18.03. 

2. Separable differential equations. Many differential equations arising in applications are 
examples of separable differential equation. A separable ordinary differential equation is a first­
order differential equation, 

dy 
= F (x, y),

dx 
for which f (x, y) factors as, 

F (x, y) = g(x)/h(y). 

Example. Find the equation y = f (x) of every curve with the following property: For every point 
(x, y) on the curve, the tangent line to the curve is perpendicular to the line joining (x, y) to the 
origin (0, 0). 

The slope of the tangent line to the curve at (x, y) is dy/dx. The slope of the line joining (0, 0) and 
(x, y) is y/x. Since the tangent line is perpendicular to the line joining (0, 0) and (x, y), 

dy 
= −x/y. 

dx 

Thus, the equation y = f (x) is a solution to this separable differential equation.


The algorithm for solving a separable differential equation is the following.


(i). Factor f (x, y) as g(x)/h(y). This is often the most difficult step. In the example, it is quite

easy. Simply take g(x) = −x and h(y) = y.


(ii). Rewrite the differential equation as an equality of differentials. In other words,

rewrite the equation as,


dy g(x) 
= 
h(y) 

⇒ h(y)dy = g(x)dx. 
dx 
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In the example, this gives, 
dy 

= 
−x ⇒ ydy = −xdx. 

dx y 

(iii). Antidifferentiate both sides of the equation. In the example, the antiderivatives 

ydy = −xdx, 

give, 
1 2 −1 2 y = x + C. 
2 2 

(iv). If there is an inital value, use it to find the constant of integration. An initial value 
problem is an ordinary differential equation together with some information for an initial value x0 

of the independent variable. It is often written, 

dy/dx = F (x, y), 
y(x0) = y0. 

The example was not an initial value problem. However, it can easily be made an initial value 
problem by specifying, 

y(1) = 1, 

for instance. With this condition, the constant C satisfies the equation, 

1 
(1)2 = 

−1
(1)2 + C. 

2 2 

The solution is, 
C = 1. 

(v). Simplify the answer. Often it is best to solve for y = f (x). Often this is unnecessary. It 
depends on the problem. In the example problem, the simplest answer is the implicit answer, 

x2 + y2 C.= 2

So the solution of the initial value problem is, 

x2 + y2 = 2. 

Thus every curve satisfying the geometric property is a circle centered at the origin. 

Example. Here is a somewhat different example. There is a single separable ordinary differential 
equation satisfied by every function, 

y = (x − a)3 , 

where a is an arbitrary constant. Find this differential equation, and find all its solutions. 
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The derivative of y is, 
dy 

= 3(x − a)2 . 
dx 

The constant a can be eliminated by writing this as, 

2/3dy 
= 3[(x − a)3]2/3 = 3y . 

dx 

This is a separable differential equation, 

y2/3 .dy/dx = 3

The algorithm gives, 
y−2/3dy = 3dx, 
y−2/3dy = 3dx, 
3y1/3 = 3x + C. 

Calling the constant −3a gives the answer, 

y = (x − a)3 . 

However, there are other solutions. For instance, y = 0 is a solution. The general solution of the 
differential equation depends on 2 parameters, a < b, 

y =


⎧⎨ ⎩


(x − a)3 , x ≤ a, 
0, a < x ≤ b, 

x > b (x − b)3 ,


The problem is that in the step giving dy/y2/3 = dx. If y equals 0, this equation involves division 
by zero. Division by zero is not allowed, so the method breaks down. 

Important fact. This fact will not be used in this class. However, it is often crucial in real­world 
applications to know the solution to an initial value problem is unique. The fact is, 

dy = F (x, y),
dx 
y(x0) = y0, 

has a unique solution for x close to x0 if F (x, y) is both continuous and differentiable at (x0, y0). 
In the previous example, F (x, y) = 3y2/3 is continuous at y0 = 0. But it is not differentiable at 
y0 = 0. Ultimately, this is the reason for the extra solutions of the differential equation. 

3. Applications. Separable differential equations come up often in applications. The most 
common separable differential equation is the equation for exponential growth, 

dy 
= ky, 

dt 
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where k is a constant. 

The solution behaves differently if k is positive or negative. For k positive, this equation arises in 
population growth and interest on savings, among others. For k negative, this equation arises in 
radioactive decay, a discharging capactior in an RC­circuit, and Newton’s law of cooling. 

Population growth. The simplest model of population growth is that a population N (t) (modeled 
as continuous for simplicity) grows at a rate proportional to the size of the population. This gives, 

dN 
= kN. 

dt 

Following the method gives, � dN/N = kdt, 
1/N dN = kdt, 

ln(|N ) = kt + C. |
Exponentiating both sides gives, 

N (t) = 

Observe that N (t) increases without bound as t increases. When N is very large, the ecosystem 
cannot support such a population. Thus the model is only valid if N (t) is not too large. 

N0e . kt 

A slightly more realistic model hypothesizes a constant, equilibrium population Nequi sustainable 
indefinitely. The model is that the population grows at a rate proportional both to the population 
N and the difference Nequi − N , 

dN 
= kN (Nequi − N ). 

dt 
This is again a separable differential equation. It gives the solution, 

N (t N0Nequi/(N0 Nequi − N0)e
− t).) = + ( kNequi

The most important feature is that N (t) approaches Nequi as t increases. This is called the steady­
state solution. In general, to find the steady­state solution to a separable ordinary differential 
equation, assume the solution is constant y = y1 so that dy/dt is 0. In the original model of 
population growth, the only steady­state solution is N = 0. In the new model, there are 2 steady­
state solutions, N = 0 and N = Nequi. In Math 18.03, stability is defined, and a method is given 
to show the only stable steady­state solution is N = Nequi. 

Radioactive decay. A radioactive isotope decays to a more stable isotope at a rate proportional 
to the remaining radioactive isotope. Thus the mass m(t) satisfies a differential equation, 

dm 
dt 

= −km. 

Using the method, the solution is, 
m(t) = m0e

−kt . 
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An important feature in decay problems is the half­life. The half­life is the length of time necessary 
for the mass of radioactive isotope to decrease to one­half the initial mass, 

m(Thalf) = m0/2. 

Solving in the formula gives, 
Thalf = 

Example. The half­life of a certain radioactive isotope is 20 years. How long is required for the 
mass to decrease to 1% of the initial mass? Using the formula above, k = ln(2)/25. Therefore the 
equation for the mass is, 

/k.ln(2)

m(t) = m0e
− ln(2)t/25 . 

Thus the time tf when the mass equals 0.01m0 satisfies, 

m0e
− ln(2)tf /25 = m0/100, 

or, 
ln(2)tf /25 = ln(100) = 2 ln(10). 

Solving gives, 
tf = 50 ln(10)/ ln(2) = 

Newton’s Law of Cooling. Isaac Newton proposed a law for the rate­of­change of the tempera­
ture T of an object placed in a large, effectively infinite, environment at a fixed ambient temperature 
Tamb. The law is that the rate­of­change of T is negatively proportional to the temperature gradient 

166 years. 

T − Tamb, 
dT 

= −k(T − Tamb). 
dt 

The method gives the solution, 

T (t) = Tamb + (T − Tamb)e
−kt . 

As t increases, the temperature T approaches the steady­state temperature, Tamb.



