
Prob. 6.8 

Assuming the material in a spherical rubber balloon can be
modeled as linearly elastic with modulus E and Poisson's 
ratio ν = 0.5, show that the internal pressure p needed to 
expand the balloon varies with the radial expansion ratio λ 
= r/r0 as 
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where b0 is the initial wall thickness. Plot this function 
and determine its critical values. 

The true stress as given by Eq. 6.1 is 
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Since the material is incompressible, the current wall thickness b is related to the original 
thickness bo as 
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The stress is then 
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The strain is 
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If the material is linearly elastic, the strain and stress are related as 
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Using (1) and (2) in (3): 
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Plot: 
pstar:=1/lambda[r]^2 - 1/lambda[r]^3; 

1 1 pstar := − 
λ 2 λ 3 

r r 

plot(pstar,lambda[r]=1..5); 
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Determine λr at maximum pressure: 
'lambda[r,max]'=solve(diff(pstar,lambda[r])=0,lambda[r]); 

3
λ = , 2r max 

The maximum normalized pressure is 
Digits:=4;'pstar[max]'=evalf(subs(lambda[r]=3/2,pstar)); 

pstar = .1481 max 

This maximum is commonly experienced as a yield-like phenomenon in blowing up a 
balloon. However, its origin is geometrical and not a function of the material. 

Prob. 6.9 

Repeat the previous problem, but using the given
constitutive relation for rubber: 

E F 1 Iσ = λ2 −t x x 2 23 HG λ λ  KJ x y 

The circumfrential extension ratio is: 

λθ = λφ = 
2πr 

= λ r2πr0 

This is also both λx and λy in the given relation. From Eq. (1) of the previous solution we 
can write 
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Plotting this along with the prevous result: 
pstar1:= 1/lambda[r]^2 - 1/lambda[r]^3;  

pstar2:= (1/6)*(1/lambda[r] - 1/lambda[r]^7); 

plot({pstar1,pstar2},lambda[r]=1..5); 
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Extension at maximum pressure: 
Digits:=4;'lambda[r,max]'=fsolve(diff(pstar2,lambda[r])=0,lambda[r]); 

λ = -1.383 ,r max 

The maximum normalized pressure: 
'pstar[max]'=evalf(subs(lambda[r]=1.383,pstar2)); 

pstar = .1033 max 


