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PROFESSOR: All right, now for something completely different. Before beginning though, I would

like to raise a procedural question. It was my intent that quiz number two, which is

like a little more than a week away, was going to be part symmetry and part tensors.

I don't want to have your fortunes based by weight of 2:1 on symmetry theory as

opposed to properties.

What I would suggest, and you can express your opinion either way, is that we

postpone quiz number two by maybe as much as 10 days, so that it can be half

symmetry and half the introductory discussion of tensors. And if that does not create

a conflict with some of your other classes, I would propose that as a suggestion. If

not, we can just have on the quiz what we're going to cover of tensors in the next

couple days and have the rest symmetry.

So what I am suggesting is the quiz was scheduled for a week from November 8,

which is a Tuesday. What I would suggest is putting that off to the 18th, and that will

give us four extra lectures-- six extra lectures-- on tensors and we can make the

quiz 50-50.

AUDIENCE: What does that do to quiz number three?

PROFESSOR: Quiz number three is going to stay in place because it's right at the end of the term.

AUDIENCE: What about the subject in three?

PROFESSOR: It will be all tensors. It will be all tensors and properties. And the third quiz is set up

for longer than you think. It's December 8, so it'll be about three weeks.

AUDIENCE: So everything from here on?

PROFESSOR: Yeah. Does that make sense? Or is somebody going to have a big, traumatic

responsibility at that point?

AUDIENCE: I don't know, but I think it would be probably be easiest for us not to have it three

days before close of exams.
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PROFESSOR: OK, OK, that's what I wanted to hear. How about if we went just a little bit further

then and did it not on the-- when was the suggestion? The 18th. Let's say we did it

on Tuesday the 15th? Does that conflict with anything?

AUDIENCE: That's a little bit.

AUDIENCE: We were doing it on the 18th.

AUDIENCE: Is that Friday?

[INTERPOSING VOICES]

PROFESSOR: I'm sorry, 18th. I said it would be 17th. Excuse me.

AUDIENCE: That definitely would be a little better.

PROFESSOR: OK, let me allow you to think about that, and that would be pushing it back one

week and maybe it'd be-- we'll see how much material on tensors we cover. So let's

table it for now but let's say, tentatively, let's consider seriously moving it to the 15th.

OK? But you guys have final say if there's a preference that you have.

OK let's talk about properties in first a general and rather philosophic way. When we

discuss properties we very commonly lump together a set of behaviors which have

some common phenomenology. So for example, we will talk about mechanical

properties.

And that's a basket in which we place many different sorts of behavior. We place

things like fracture toughness, yield strength, elastic constants, a whole variety of

things involving strength deformation and so on. Or another thing we very often

lump together in a basket is something called electrical properties. And we talk

about electrical conductivity, ionic conductivity, electronic conductivity. We talk about

dielectric constants, we talk about permittivity and permeability, magnetic

properties-- a whole bunch of other classes of behavior, which have some sort of

root or description in terms of electromagnetism.
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There are though a lot of strange aspects to properties. There are some properties

that are determined for material which no longer exists when you're through

determining the property. You have a sample you want to know what the yield

strength is. So you put the gradually increasing load on it until finally, POP, it breaks.

And now you know what the yield strength is for a material that no longer exists.

Another example is an old one. Back before the days of X-ray diffraction when

people would try to characterize material, anything that is very intensely colored

usually looks black, and that's not a very definitive property. The color of something

is a very prominent characteristic.

So for mineralogists, in particular, anybody going out into the hills and wanting to be

prepared to determine what a particular rock that they tripped over was had

something on a rope around their neck called a streak plate. And what the streak

plate was was a little rectangle of porcelain. And they would take this black mineral

and rub it on this piece of porcelain and it would leave a mark-- that was called the

streak.

And what this was was actually little bunch of fragments that rubbed off on to the

porcelain because the porcelain was white and the fragments were very small. A

black piece of rock could give you a streak that was brown or green or deep orange.

And so you really were determining the color of the material when it was in a form

finely divided enough that light could pass through it. So the streak test was a very

important diagnostic for determining minerals.

There are some properties that we refer to as structure sensitive. In the sense that

their value-- conductivity is a good example-- the value of ionic conductivity depends

on the impurities and point defects that are present in the material. So to say that

the ionic conductivity of a certain material is such and such, you have to specify the

purity and perfection of the material or the property's meaningless.

There are some properties that are not even single-valued. And the best example

there are dielectric or magnetic properties. If you plot the magnetization of a

material, the magnetic moment per unit volume as a function of the applied
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magnetic field B, the material is initially non-magnetized. When you apply B, you get

a magnetic moment per unit volume that eventually saturates.

And then if you remove the magnetic field, the material keeps some of its

magnetization. It doesn't go to zero when you reduce the field to zero. You have to

reverse the field to get the property to go to zero and then magnetize it in another

direction. And if you continue to cycle the magnetic field, you get a behavior like this.

This is hysteresis, and this type of behavior is called generally hysteretic.

Same thing would be a relation between the displacement vector and an applied

electric field. But clearly you can have any value of the magnetization in this range.

And if you relate the magnetization as a function of the applied field, you can get

any value of the proportionality constant you like between a negative maximum and

a positive maximum including zero. So there's a property that's not even single-

valued. Depends on the past history of the sample.

And then there are even more peculiar properties. There are properties that are--

we call them composite properties and very often qualitative. What do they mean by

a composite property. Let me give you one example-- The property fuzzy.

If I say fuzzy, you know exactly what I mean. It means something that has a diffuse

reflectivity, something that has a surface texture that's yielding. It's not like rubbing a

wire brush. It's soft and giving, a whole collection of different properties. But yet

when I say fuzzy, you know exactly what I mean.

Let me not be so facetious as talking about a fuzzy property. People such as

ceramists or powder metallurgists very often will take a powder of a material and

consolidate it by compacting it and heating it, very often subject to a compacting

stress. And when you do that little necks grow between the particles and they hold

together and the material is centric.

So you refer to a property of a powder as being centerable or the centerability of a

powder. You know exactly what somebody means by that. But what does it depend

on? It depends on the surface energy, it depends on vapor pressure, depends on
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bulk diffusion coefficients. It depends on surface diffusion coefficients. And all of

these things have to be just right to make the powder something that easily

densifies upon heating in the application or not of pressure.

So you know exactly what I mean by centerability, but it is a very complex property.

And was one that really was not understood until probably the late 1950s. Until then,

it was an art that was entirely empirical. And it was somebody here at MIT, a fellow

named Robert Coble, who developed a theory of centering that was the first really

workable theory that described densification by heating and compaction. OK,

composite property that depends on many different individual properties of the

material.

OK, what we are going to examine here are equilibrium properties that can be

rigorously defined and measurable. So we're going to leave out of the picture things

like fuzzy and centerability. And let me give a very nice, obscure definition of what I

mean by a property. And what I mean by a property, in terms of a formal statement,

is the response of a material to a specific change in a given set of conditions.

So the response of the material to a specific change in a set of conditions that

relates independent properties and dependent properties for a particular process.

So I'll state that again because I think it's terribly elegant. So a property is the

response of the material to a specific change in a given set of conditions that relates

independent and dependent quantities in a particular process.

Now there are a lot of properties that have their roots solidly embedded in

thermodynamics. So let me give you a few of those. What we'll talk about when we

specify a property is something that we will refer to as a displacement. We'll talk

about a generalized displacement in response to a generalized force. So some of

the thermodynamic quantities that are related in this fashion-- if we list some forces

and some displacements, the thing that happens as a result of that stimulus that's

applied to the material.

Temperature can be regarded as a force that results in all sorts of processes as a

result-- thermal energy flow, thermal expansion, all sorts of things. But one of the
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things that will happen in response to a temperature change thermodynamically is

an entropy. So you can view entropy as a generalized displacement resulting from

the application of temperature as a generalized force.

Another example is electric field and the thing that happens there, and

electromagnetism, is the quantity, D, which is displacement. Still another example,

stress, and the result of applying a stress, among other things, is a strain. What is

special about these forces in this displacement is that their product is, in each of

these cases, energy, the change in internal energy of the particular body. And when

that is the case, these are said to be conjugate-- a conjugate force and

displacement. And there are other examples that one can come up .with.

Now to talk about a specific set of properties. Very often, and this crept into the

earlier discussion, very often the thing that we do to a material, as a generalized

force, is a vector. So very often the thing that we do to the material, apply an electric

field, apply a magnetic field, apply a temperature gradient, apply a tensile stress, it

has the characteristics of a vector, magnitude and direction.

And in many cases, the thing that happens as a generalized displacement, we may

call this in general, q, is also a vector. An example is if we apply an electric field as a

generalized force, one thing that might happen is a current flow, which is also a

vector. And we are accustomed to writing, q, the generalized displacement, as a

proportionality constant, sigma, which is in the case of electric field and current flow,

the electrical conductivity. Let me call it, in general terms, proportionality constant,

a, times the applied vector, p.

Is this something we would like to stick with as a general relation? Well let me

submit that writing an expression of this form makes an inherent assumption.

Namely that this will be true for small, and we'll have to define for each property

what we mean by a small, applied vector. Let me give you an example.

If p were-- the applied vector was electric field, and the resulting vector was current

flow, and the relation between those is the conductivity-- a relation of this sort says

that if you double the field, you double the conductivity. You triple the field, you triple
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the conductivity. Obviously this can't go on indefinitely because all a sudden, POW,

dielectric breakdown. The sample evaporates at the smoke.

And again, you have the property of a material which no longer exists. So a lot of

properties, we inherently assume that the applied vector is small in order to write

something in an expression of this form. So for conductivity, dielectric breakdown is

going to destroy the nice linear relation between current flow and electric field.

That's not always the case. Let me give you an example of another property. And

this is a property, magnetic susceptibility, which relates the magnetization, which is

magnetic moment per unit volume, and relates that to an applied electric field-- an

applied magnetic field, H. And the proportionality constant, represented by a Greek

chi, is the magnetic susceptibility. So let me give you a specific example.

Suppose we have a chunk of glass and the glass contains a dilute concentration of

iron. And iron carries a permanent magnetic moment. And the reason I want to

make it a dilute concentration of iron is I don't want these magnetic moments close

enough that they can interact with one another. I want this to, therefore, be a dilute

system.

So we have different iron atoms in this. Each iron atom has a magnetic moment.

And then we put this in a magnetic field, H. And the magnetic field acts on each of

these little magnetic moments just as though it were a compass needle. And so it

will try to take each of these moments and drag it into coincidence with the magnetic

field.

But at a finite temperature, temperatures making these magnetic moments jiggle

around, so at a finite temperature, the magnetic moments will just not simply zing

into coincidence with the magnetic field. You'll have to increase the magnetic field to

make it larger. When that happens, more and more of the magnetic moments will

come into alignment. And if you put on a really strong magnetic field, then every

single magnetic moment will be dragged into exact alignment with the magnetic field

and the system has saturated. There's no way you could squeeze further magnetic

moment per unit volume out of it.
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So again, you would expect, for this particular property, magnetic susceptibility of a

material, if you plot it as a function of the applied magnetic field-- linear maybe be at

low applied fields-- but eventually if you make the field strong enough, the system is

going to saturate. And then again, no longer will the direction of the magnetization,

and that magnetic moment, be parallel to H. But the property becomes nonlinear if

the applied vector is strong enough.

This is an example of a property where you would not go wrong at all by stating

direct proportionality. For ordering to occur, temperature and applied field go hand

in hand. Increased temperature tends to create more disorder. Increased magnetic

field tends to align the moments.

In the days when MIT had a national magnet laboratory, the magnet laboratory held

the record for the strongest magnetic field ever produced artificially by man. And if

you took that magnetic field and applied it to this system of dilute iron in a glass, you

would have to lower the temperature of the sample to about 3 Kelvin before you

would begin to see saturation.

So even the strongest field that you could produce in a laboratory environment

would not succeed in producing non-linearity until you cooled the sample down

almost to absolute zero. So here would be a case where under any practical

consideration whatsoever, assumption of strict proportionality would be right on the

money. You'd be absolutely correct.

But there's another assumption built into this statement. P, the generalized force, is

a vector in the cases we're discussing now, and q is also a vector. So when we write

an expression of this form you're making another assumption. And that is that the

vector displacement that results is always exactly parallel to the vector that you

apply.

Do I make a big deal out of this? Isn't that always going to be the case? I mean

whoever heard of taking a piece of metal and putting an electric field on it in this

direction and having the current run off in this direction. It's absurd. Or maybe it isn't
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so absurd. So let's think of some of the atomistics of this process.

Now, since I know I'm among friends, I will not hesitate to display my ignorance,

total ignorance, of polymer chemistry. So suppose we had a piece of polymer.

That's what a polymer molecule looks like. It's a more or less linear molecule, and

so these might, in a very highly ordered polymer, be chains that lined up like this.

And suppose we now put an electric field on this polymer and asked how the current

will flow. Again, it would not be absurd to say that an electron sitting on this polymer

chain in response to this field would be constrained only to flow in the direction of

the chain and would find it rather difficult to hop from one chain to another. So

maybe, just maybe, we could apply an electric field to a polymer and it would have a

flow in this direction, that would be pointing in this direction, and the current flow, J,

would be in that direction.

So should we maybe rethink this idea of the direction of the generalized

displacement being not parallel to the direction of the generalized force. OK, these

are hypothetical examples. Let me now give you an example of a real property for a

real material, for which the thing that happens, the vector that happens, is decidedly

not parallel to the direction of the applied vector.

OK, thermal conductivity is something that relates a heat flux, usually represented

by the symbol K, and relates that to a temperature gradient, dt dx, which is a vector.

The thing that gives rise to thermal conductivity can be either propagation of

radiation as in propagation of light traveling through a transparent material.

But the other mechanism for thermal conductivity is modes of lattice vibration. When

a material is hot, the atoms are jiggling around and you can make the displacement

of an individual atom be represented by a sum of waves moving in all different

directions with a variety of wavelengths in a variety of amplitudes. Take all those

waves, add them together at a particular time, and you get the displacement of the

atom.

Propagation of heat by this mechanism, by modes of thermal vibration, can be very,
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very anisotropic and probably the best example of this is-- get a single crystal of

graphite. And have the layers, the graphite sheets, which are hexagonal rings in

which each carbon has three neighbors, and have the sheets be parallel to the

surface of an extended two-dimensional slab.

Now we can't do that. Single crystals of graphite don't occur in sizes like that. But

what you can do is make a material called pyrolytic graphite that you make by

having a reaction in the vapor phase and having the soot that's formed settle down

onto a substrate.

And what happens is you nucleate a graphite crystal in one orientation, and that

grows preferentially with its layers parallel to the surface on which it's nucleated.

And these nuclei occur at random. So you get a bunch of single crystals of graphite,

which all have their layers, their three coordinated layers at parallel, but they are

oriented at random about their c-axis. And that's a material that's very easy to

prepare. And it's called pyrolytic graphite, and it has interesting applications and

properties.

OK, now I'm going to suggest an experiment to you and I'll caution you, please do

not try this at home. Get yourself a piece of pyrolytic graphite. Put a Bunsen burner

underneath it. Play the Bunsen burner on the bottom of the sheet of pyrolytic

graphite. And to determine temperature, we'll take a ball of cotton and put it directly

above the flame. And then take another ball of cotton and put it down at the end of

the sheet.

If you do that and bring up the Bunsen burner, this piece of cotton will sit there and

sit there and sit there and sit there. And this piece of cotton will instantly burst into

flame. So here's a case where dt dx, the thermal gradient, points in this direction.

And the heat flow goes off in a direction at right angles to the temperature gradient,

almost exactly at right angles.

It turns out that the thermal conductivity in this direction, the value of K in the-- I

want to put crystallographic directions on this. But K parallel to the layers is equal to

10 to the third times K, perpendicular to the layers.
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So there's an anisotropy of the property that amounts to a factor of 1,000. Very

dramatic. So what I'm leading up is that in a general relation between a generalized

displacement, p, and a generalized force-- I'm sorry, I'm using q-- p and q-- we just

can't simply put some constant in front. Because that assumes inherently that the

direction of what happens, the vector that happens, is exactly parallel to the

direction of the applied vector and that generally is not true. The difference may be

small but it has to be taken into consideration.

All right, let me now suggest a way of patching this up. What I'm going to do is

assume-- and it is an assumption-- we're going to assume that each component of

the vector that happens is given by-- in fancy terms, the vector that results as the

generalized displacement is given by a linear combination of every component of

the vector that's applied. And that's what we've defined as the generalized force.

So how would we express this analytically? I am going to use as my coordinate

system, not x, y, and z as we usually do, I'm going to call it x1, x2, and x3. The

reason is we'll see some unique properties of these indices that are very useful

algebraically. So I'm going to now take my applied vector, p, and I'm going to

assume that it has three components, p1, p2, and p3 along x1, x2, x3, respectively.

My coordinate system, although I did not state it explicitly, is going to be a Cartesian

coordinate system, not a crystallographic coordinate system.

So what I'm proposing here is that we take each component of the resulting vector

q-- let's say q1-- and we'll assume that that's given by a linear combination of all

three components of the vector p. So it'll be some number times p1 plus some

number times p2 plus some number times p3. And those numbers in general will be

different.

So let's say I call the coefficient a, and now I'm going to define a convention that will

stay with us. I'm going to define each of these coefficients, a, in terms of the index

of the component of the generalized displacement which is being computed, and

the coefficient modifies the component of the generalized force for that particular

term.
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So I'm going to call this a11, where the 1 goes with this and the 1 goes with this. I'm

going to call this a12, so that the 1 again says it's a contribution to q1. The 2 says

that this term modifies p2. . And this similarly would be a13. For the term

component of the generalized displacement, q2, I'll use the coefficients a21 times

p1 plus a22 times p2, plus 23 times p3. And q3 similarly will be a31 times p1, plus

a32 times p2 plus a33 times p3.

So I've got three simultaneous equations then, one for each component of the

vector that results, the generalized displacement. So I can sum up this set of three

equations by saying that the i-th component of q, where this is some particular

component, q1, q2, or q3, is given by the sum over j from 1 to 3 of aij times p sub j.

So I've got ai1 times p1, ai2 times p2 plus ai3 times p3. So this is in a nice, compact

little nugget the expression that we are assuming will apply for all sorts of physical

properties in which this is a vector and this is a vector-- electrical conductivity,

magnetic susceptibility, thermal conductivity, and so on.

OK, this is a bad point to introduce something as hairy as what comes next. But I've

got one minute left, and I think I can do it. I'm going to introduce something called

the Einstein convention after old Albert Einstein himself. I'm sorry, but nobody said

everything this term had to be easy. So let me introduce, if you're ready for it, the

Einstein convention.

Old Albert, I think, was just as lazy as anybody else. And he said it is going to be a

bloody pain in the butt-- I don't know if he put it exactly this way. It's going to be a

pain in the butt to write this summation every time we want to combine three terms

in a linear combination. So the Einstein convention is let us throw out the sigma and

write this expression just as qi times aij p sub j. And whenever we see a subscript

repeated, summation over repeated subscript is implied.

OK so that's the Einstein convention. It will save us the trouble of writing in a lot of

summation signs. But I would caution you that this convention, compact and

convenient as it is, can define some polynomials that are nightmares. So let me give

you one example of this, and this is actually a physical property.
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Let me say that Cijkl is given by ai capital I aj capital J ak capital K, al capital L times

let's say D, capital I, capital J, capital K, capital L. That actually, believe it or not,

means something physically and we're going to get to that in due course.

But what this is, taking the Einstein convention into account, this is a quadruple

summation over capital I, capital J, capital K, and capital L. These are very often

referred to in this business as dummy indices, meaning that they don't really mean

anything physically. They're just indices of summation.

I would caution you that this is a term that does not permute. If I say those are

dummy indices, it means one thing. If I say those are indices, dummy, it means

something completely different, and you're apt to get a poke in the nose.

OK so these are dummy indices. Now, what does this represent? I won't say what it

represents physically, but this consists of terms in four variables times a coefficient.

So there are five quantities in each term.

If I sum over capital I, J, and K from 1 to 3, there are going to be 81 such terms,

each with five elements in each term. So it's going to be on the order of 405 terms

in this summation, and we've collapsed the whole thing down, 405 terms in this nice

summation. So it is a great facility for writing down expressions explicitly, but these

terms can hide a terribly, terribly complex polynomial.

All right, I think that's a good place to quit. It continues to amaze me, though, how

some absolutely trivial convention, when first proposed by a great man, will carry

that man's name no matter how stupid it is. So this is called the Einstein convention

by everybody who works in this field.

Another one, just briefly to finish up, when you discuss dislocations, you talk about a

circuit of steps around the dislocation. That's called a Burgers circuit. And if you do

the same circuit in a corresponding piece of material that doesn't have a dislocation,

if this circuit closes, this circuit fails to close by something that's called the Burgers

vector.
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Every book on dislocation theory says, Shockley called this good material. I'm sorry,

Shockley called this good material, and Shockley called this bad material. Big deal--

good material, bad material because it's got a dislocation in it. But that is identified

with Shockley's name in every discussion of dislocation. I'm just jealous because

nobody has ever said according to me, such and such is-- all right, see you later in

the week for more great things.
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