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Chapter 4

Optical Performance

For photodetector design the single most important material property is the
absorption coefficient. Simply, a material must absorb light before it can detect it. The
absorption coefficient is therefore the critical device design parameter for high quantum
efficiency photodetectors. Optimization of the absorption coefficient maximizes the
percentage of carriers created in the active region of a device. Light incident on a
material with an absorption coefficient much greater than the design optimum may create
most or all of the photogenerated carriers near the surface, where they are likely to
recombine. Conversely, a material with an absorption coefficient that is too low will not
absorb a significant fraction of the incident photons.

The absorption coefficients of silicon-germanium alloys at A=1.3 and 1.55um are
lower than optimum. Thus, achieving high quantum efficiency germanium-silicon
photodetectors requires maximization of the absorption coefficient. While tiie absorption
spectra of pure silicon and germanium are well known, and pioneering work by
Braunstein ef al.®® reported the absorption spectrum of relaxed silicon-germanium alloys,
little, if any, data is available about the absorption coefficient of strained silicon-

germanium alloys.
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Maximizing the absorption coefficient requires an understanding of, and an ability
to manipulate a material’s electronic band structure. In the case of silicon-germanium
alloys, two “handles” are available by which to manipulate the band structure: alloy
composition and strain. Although the effect of alloy composition and strain on band gap
has been addressed for the limited case of silicon-germanium alloys strained coherently
on silicon substrates, the combined effect of strain and composition on band gap and the
absorption coefficient have not.

In this chapter, a model is presented which calculates the band gap and the
absorption coefficient as a function of strain and composition. The model is based on the
critical points in the relaxed band structure and uses deformation potential theory to
calculate how these critical points shift with biaxial <001> strain. The absorption
coefficient is calculated for each transition between the valence band maxima and the
local conduction band minima. Spectral photocurrent response of the strain-balanced
superlattice materials has been measured and a comparison to the model is made.

Section 4.1 details the band structure of pure silicon, pure germanium, and silicon-
germanium alloys. The effects of biaxial strain on the lattice and the band structure are
detailed in Section 4.2. A discussion of the how strain and alloy composition affects the
band gap is also included. Section 4.3 sets forth the basic principles of determining the
absorption coefficient from knowledge of the band structure. An outline for the model
that calculates absorption coefficient as a function of wavelength, biaxial (100) strain and
alloy composition is presented in Section 4.3.4. In Section 4.4, the photocurrent response
of strain-balanced superlattice photodetectors is presented and compared to the results of

the absorption model.

4.1 Band Structure

An ideal semiconductor band structure at OK is characterized by a completely
filled valence band and a completely empty conduction band; the two are separated by a
band gap, in which there are no allowable states. Photons incident upon the ideal
semiconductor will not be absorbed unless they possess energy greater than the band gap

energy, the minimum level of energy required to excite electrons from the valence band
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into the conduction band. To quantify the probability of such absorption events for a
given semiconductor, the nature of that semiconductor’s energy-momentum, or E-k,

relationship must first be analyzed.

4.1.1 Conduction Band

The energy-momentum relationships for silicon and germanium are shown in
Figure 4-1. Both of these semiconductors are categorized as indirect gap semiconductors
because the transition from the energy maximum in the valence band to the energy
minimum in the conduction band does not conserve momentum unless a third particle,
such as a phonon, is emitted or absorbed. This band structure is in contrast with that of
direct gap semiconductors, in which the linear momentum of an electron is the same at
the conduction band minimum as the valence band maximum. The band gap of both
silicon and germanium is indirect, because for both materials the conduction band
minimum is not at k=0.

The band gaps of silicon and germanium at 300K are 1.125 and 0.67 eV,
respectively. However, the band gap of silicon-germanium alloys is not a linear function
of alloy composition. The non-linearity arises from the differently directed momentum
vectors of the conduction band minima. The conduction band minimum of silicon lies
along the six (100) directions or X-valley. And the conduction band minimum of
germanium lies along the eight (111) directions or L-valley. Figure 4-2 shows the band
gap of relaxed silicon-germanium alloys as a function of germanium fraction, x. For
alloys with germanium fraction less than (.85, the band structure resembles that of
silicon; the conduction band minimum lies in the (100) directions or X-valleys. For
alloys with germanium fraction greater than (.85, the band structure rcsembles that of

germanium; the conduction band minimum lies in the (1!1) directions or L-valleys.
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Figure 4-1: Band structure of germanium and silicon. The conduction band
minimum for germanium lies in the [111] and for silicon in the [100].66
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Figure 4-2: Band gap of relaxed silicon-germanium 2lloys as a function of
germanium fraction, x
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4.1.2 Valence Band

The valence band of silicon is composed of p-like bonding state with a maximum
energy at k=0. The valence band maximum consists of three, two-fold spin degenerate,
bands. There are the two degenerate (j=3%2, mj=t'2) and (j=3/, m;=+%2) bands and a spin-
orbit split band (j=Y2, m;=t!2). The spin-orbit splitting energy for silicon is 0.044 eV.
Germanium’s valence bana structure is similar to silicon’s with spin orbit splitting

energy, 0.29 eV.

4.2 Strain and Band Structure

The band structure of a semiconductor is fundamentally tied to the periodicity of
the semiconductor’s lattice. Any strain in the lattice will distort the periodicity of the
lattice, and will correlate to a change in the band structure. The 4% lattice mismatch
between silicon and germanium lattices gives rise to a biaxial strain in the (100) for
coherent silicon-germanium films grown on (100) substrates. This biaxial strain in the
(100) has several effects on the band structure of silicon, germanium and their alloys,
among which is a change in transition: energies and the band gap energy. Deformation
potential theory describes the change in energy of critical points in the band structure
with respect to the strain tensor. The discussion of deformation potential theory below is

adapted from the treatments by R. P<=:ople67 and F. Pollak.%®

4.2.1 Distortion Components

The distortion of a diamond cubic lattice under biaxial strain in the (100) plane
can be separated into two components: tetragonal distortion and dilation distortion.
Tetragonal distortion destroys the cubic symmetry of the lattice, as seen in Figure 4-3.
The degree of tetragonal distortion is referred to as the tetragonal strain, ey, and is
expressed as

er=en—eyL (4-1)
where ¢ is the in-plane strain and e, is the out-of-plane strain. For biaxial strain in the
(100), the tetragonal strain is reduced to a function of e, by substituting standard elastic

constant relationships:
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eT=a,(‘2m_1) (4-2)
11

where ¢;; and c); are the applicable elastic constants. Tetragonal distortion impacts the
band structure of silicon in two significant ways, splitting the X-valley conduction band
and the splitting valence band. Dilation distortion is the fractional change in volume
under strain. This change in volume can be expressed in terms of ¢lastic constants and

the in-plane strain as:

éVKEeII (‘2c|2+2} 4-3)
Cii

Biaxial Compression

--------------------- C a:b#c
b/ c>ab
a AV=0

’ a=
T L L T > ¢l p/ c<ab
Biaxial Tension a AV=0

Figure 4-3: Tetragonal Distortion

4.2.2 Conduction Band Splitting

Biaxial strain in the (100) splits the energy of the six-fold degenerate X-valley
conduction band minima, resulting in what is commonly referred to as a doublet and a
singlet, (although quartet and doublet might actually better describe the strain-split six-

fold degenerate minima better). The conduction band splitting energies for the singlet

and doublet, AES and AEZ due to biaxial strain in the (100) are given by:

AES = -% E,er . for (100) and (100) valleys (4-4)

78



AE? =%E2er for (010),(001),(0T0), and (00T )valleys, (4-5)

where E; is the X valley conduction band deformation potential, E;=(-9.2) eV for

silicon.®’

4.2.3 Valence Band Splitting

In describing the shifts of the valence band with strain, the nomenclature of the
three bands is sometimes changed to v,, v, and v; to account for the coupling of j=3/2,
m;=t2 and j=Y2, m;=£%2 spin orbit band. Thus v, and v; represent a linear combination of
the j='2, mj=+%2 band and the j=3/2, m=+%2 band. The j=32, m;=+32 band does not couple
and corresponds directly to v,.

The splittings in valence band energies arise from the tetragonal distortion; the

change in energies, AE, , AE’ and AE’ , are given by:
1 2 3

AE, =-erb (4-6)
AE:l = %[(AO +erb)— \/A% -24/perb+ 9e7~b] 4-7)
AE?, = %[(AO +erb)+ JA(Z) —2Agerb + 9eTb] (4-8)

where b is the valence band shear deformation potential for (100) distortions, with

b,i=(-2.2) eV and bg,=(-2.6) eV.,%° and where 4y is the spin orbit split energy.

4.2.4 Hydrostatic Shift

The dilation distortion shifts the valence and conduction bands with respect to one
another. This shift is referred to as the hydrostatic shift because this kind of deformation
in the band structure is observed under hydrostatic pressure. It should be noted that the
dilation distortion does not diminish the high order symmetry of the diamond cubic

lattice and hence no splitting of the otherwise degenerate bands results from this

contribution. The hydrostatic energy shift AE ;’ is:

av
AE‘;{ = (El +a|)7, (4-9)
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where (E;+a)) is the hydrostatic pressure deformation potential, (E;+a;)=1.6 for silicon
and (E;+a;) =(-5.7) for germzmium.69 The hydrostatic deformation potential for silicon is
positive. Thus, a decrease in volume leads to a small band gap. Germanium however has

a negative deformation potential and thus, a decrease in volume leads to a larger band

gap.

4.2.5 Band gap as a Function of Strain and Composition

Figure 4-4 shows the band gap as a function of germanium fraction x for relaxed
silicon-germanium alloys and the band gap of silicon-germanium alloys strained
coherently to the silicon lattice as calculated by R. People.67 For coherently strained
silicon-germanium alloys on silicon substrates, biaxial strain is a function of germanium
fraction:

e = —0.042x . (4' IO)

where x is the germanium fraction. Because the strain-balanced superlattice permits
composition and strain to be varied independently it is useful to calculate the band gap of

silicon-germanium alloys as a function of strain and composition.

coherently
strained on Si

energy gap (eV)

S
23

Ge fraction
Figure 4-4: Band gap as a furction of germanium fraction x for relaxed silicon-

germanium alloys and the band gag of silicon-germanium alloys strained coherently to the silicon
. 7
lattice, as calculated by R. People.
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The strain perturbed band gap can be determined by considering the contributions
of each strain-split band in the conduction band and valence band. Figure 4-5 shows each
of the deformation potential contributions as a function of biaxial strain in the (100) for
silicon. The calculation of the minimum band gap of a strained silicon-germanium alloy
depends on whether the conduction band minimum lies in the L or X valley. The
following equations describe the change in band gap:

X _ H Ky
AE; =AE, +AE; +AE, , 4-11)
for biaxial tension, X-valley conduction band minimum:;
L _ H
AE, = AE, +AE, | (4-12)
for biaxial tension, L-valley conduction band minimum,;
X H d
AE, =AE, +AE; +AE, , (4-13)
for biaxial compression, X-valley conduction band minimum and
L __ H
AEg —AEg +AE\,12v (4'14)
for biaxial compression, L-valley conduction band minimum,

where AEgX and AEé‘ denote the change in band gap for a conduction band minimum

lying in the X- and L- valley respectively. The change in the direct gap transition energy
is equivalent to the change in band gap for an L-valley conduction band minimum.

To determine the band gap energy of a silicon-germanium alloy as a function of
biaxial strain in the (100) and composition, the relaxed band gap of silicon-germanium
alloys should be added to the change in band gap energy from the appropriate equation
above.

The relaxed band gap of silicon-germanium alloys has been studied extensively and can

be expressed mathematically as:”°
AEX (x)=1.1-0.43x+0.206x> (4-15)
AEy(x)=1.934-1.270x (4-16)

where x is the germanium fraction. To describe the changes in band gap with respect to
strain, the deformation potential constants, the elastic modulli and the spin orbit splitting

energy are linearly interpolated as a function of the germanium fraction. The exception is
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the conduction band deformation potential, which describes how the conduction band
splits with respect to tetragonal distortion. Because the (100) local conduction band is
considerably higher energy than both the (111) minimum and the direct gap local minima
in germanium bu™x material, a value for its deformation potential is not available in the
literature. For this calculation of the strain perturbed band structure it has been assumed
that the conduction band splitting deformation potential is independent of alloy
composition. The C code used to determine the band gap as a function of strain and
composition is included in Appendix A.

'The band gap as a function of strain and composition is shown in Figure 4-6. The
curves show iso-band gap energies for composition (ordinate) and biaxial strain in the
100 (abscissa). The resemblance of these curves to a topological map has led to the term
band gap map to describe them. The ridges for non-strained alloys e;=0 represents the
relaxed band gap as shown in Figure 4-2. For alloys with germanium fraction less than
0.85, the band gap is a strong decreasing function with strain, irrespective of sign. The
strong dependence on strain arises from the significant conduction band minima splitting
which dominates the other contributions. For alloys with germanium fraction greater than
0.85, the sign of the hydrostatic contribution term ensures that the band gap is reduced in
the tensile case. For compression, however, the situation is more complicated. Where
the germanium fraction x equals 0.85, the band structure of relaxed alloys is degenerate at
both the (l111) L-valley and the (100) or X-valley. The application of biaxial
compressive strain causes the transition energy between the valence band maximum and
the L-valley to increase and the valence band maximum and the X-valley to decrease.
Thus, the germanium fraction at which the X-valley conduction band minimum anc L-
valley conduction band minimum are degenerate is a function of biaxial strain. The
ledge-like discontinuity in the band gap map at high germanium fractions represents the
transition between a conduction band minimum which lies in the L-valley and one that

lies in the X-valley.
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Figure 4-5: Summary of contributions to band structure changes for silicon
under biaxial strain in the (100). [Left] shows the splitting of the conduction
band minima and the valence band at k=0. [Topright] shows the change in band
gap due to the hydrostatic contribution. [Bottomright] shows the sum of the three
contributions on the overall band gap.
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4.3 Absorption

The band gap energy marks the absorption edge for indirect gap semiconductors.
The onset of absorption is weak for photons with energies just larger than the band gap.
Figure 4-7 shows the absorption spectrum for bulk silicon and germanium. The
absorption coefficient at the band gap is weak (<10 cm™') until the photon energy is
significantly greater than the band gap energy. Although the dependence of the
absorption coefficient on alloy composition has been well-described for relaxed silicon-
germanium alloys, the effect of strain on the absorption coefficient, however, has not
been described. This section constructs a model that uses the deformation potential
theory outlined in Section 4.2 and fundamental absorption physics to model the

absorption coefficient as a function of both strain and composition.
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Figure 4-7: Absorption spectra for bulk silicon and germanium, solid line at
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4.3.1 Absorption Physics

Absorption involves the interaction of a photon and electron. As the result of the
interaction the photon is absorbed and the electron is excited into a higher energy state.

The probability of such an interaction is described by the material’s absorption
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coefficient, which is mathematically defined as the relative rate of decrease in light

intensity, I, along its propagation direction:

1 \dl(hv)

“4-17)
I(hv)J dx

Crpy) =

The absorption coefficient for a given photon energy, AV, is proportional to the
probability Py for the transition from the initial to final state and to the density of
electrons in the initial state, n;, and the density of empty states, n, . The absorption
coefficient is defined as the surnmation of these factors over all possible transitions: >

Qpy =AY Pymn s, (4-18)
where A is a proportionality constant. In determining the density of initial and final states
for a given transition, the requirements of conservation of energy and momentum apply.

This section addresses three fundamental transitions: 1) direct transitions between
the valence band minimum and the k=0 conduction band extremum, 2) indirect

transitions involving the emission of a phonon and 3) indirect transitions with phonon

absorption.

4.3.2 Absorption Coefficient: Direct Transitions

Momentum conserving transitions between the k=0 valence band maximum and
the k=0 local conduction band minimum are represented in Figure 4-8. Every initial state
at E; is associated with a final state Es such that hv=E; -E;. If parabolic bands (constant
effective masses) are assumed then the energy-momentum relationship in the conduction

band is described by

2,2
E,-E, ="K (4-19)
2m,
and the energy-momentum relationship in the valence band is
2,2
=2 (4-20)
2mh

wkhre m: and m; are the electron and hole effective density of states masses. A full

derivation is presented elsewhere’> yielding the absorption coefficient associatcd with

moimentum conserving direct gap transitions:
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Agirect( hv ) =A-\}hv_Eg (4-21)

where A* is approximately 10* cm™eV™"?, and E, and hv are expressed in terms of eV.

The direct transition represents the strongest absorption mechanism. Unfortunately for
efforts to achieve strong absorption at longer wavelengths, the direct gap energy is over
1 eV at low and even moderate germanium fractions. For pure germanium the direct
transition is at 0.80 eV. Thus high germanium fractions (x>0.9) are need for 1.3 pm

(0.95 eV) light to be absorbed across the direct gap.

Figure 4-8: Momentum-conserving transitions between the k=0 valence band
maximum and the k=0 conduction band minimum.

4.3.3 Absorption Coefficient for Indirect Transitions

For indirect transitions photon absorption involves a phonon (lattice vibration) so
that momentum is conserved. Although a broad spectrum of phonons is available usually
only the longitudinal or transverse acoustic phonons are involved as they have the

appropriate dispersion curve to conserve momentum.’>

Momentum conserving phonons
can either be absorbed or emitted; 2 schematic is shown in Figure 4-9. For absorbed
phonons, the energy balance is:

hv=E;~E; ~E,, (4-22)



and for emitted phonons the energy balance is

hV=Ef—E,'+Ep (4-23)

emission

>
k

Figure 4-9 Schematic of an absorption event for an indirect transition. A phonon
can either be emitted or absorbed to conserve momentum.

Because a phonon is involved in the absorption process, the absorption coefficient
is related to the population of phonons, N, given by Bose-Einstein statistics as:

1
Np —W—l (4-24)
e

“)2/3 or

where E,, is the phonon energy. The absorption coefficient is proportional to (m.
(my )™ which describes the effective density of states in the conduction and valence
band, respectively. The absorption coefficient for a transition involving phonon
absorption, @,, is proportional to the phonon population, N,, and to the excess energy

squared, (hv-E,-E,)*:

A(m:m;ﬁ(hv ~E,~E,f
E_p
el —|

(4-25)

a,(hv)=
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The absorption coefficient contribution for interactions involving the emission of a

photon, ¢, scales with (1+N,) and ts also proportional to the excess energy squared, (hv-
2,

E.+E,)":

(4-26)

(l_e—Ep/kT)

where A for both equations above is a constant of proportionaiity.

4.3.4 Modeling of the Absorption Coefficient

The following steps were used to model the absorption coefficient as a function of
strain, and incident photon energy, hv. The C-code for calculating the absorption
coefficient is included in Appendix A.

1) The relaxed transition energies between the valence band maximum and the
conduction band local X, L, and I" valley minima are determined as a function of alloy
composition either from equations in the literature or by interpolating between values for
silicon and germanium.

2) Deformation potential theory is used to calculate the shifts and splitting of the valence
band maximum and the conduction band X, L, and I' local minima to determine the
change in energy of each of the transitions involving a critical points in the valence band
and a local minima in the conduction band. These values are then combined with the
relaxed transition energies to yield the strain-perturbed transition energies.

3) The absorption contribution of each of the strained transitions is determined from the
appropriate equation in Section 4.3.2. The absorption coefficient contributions are then
corrected for the reduction in density of states because of degeneracy lifting (scaling
absorption contribution to (m")zl3 for each band). Effective phonon energies from the
literature”® for silicon and germanium were assumed characteristic of transitions relating
the X and L valley conduction band minima, respectively.

4) All of the absorption coefficient contributions are summed to yield the total absorption
coefficient.

This model contains two proportionality factors which were determined by fitting

the model derived absorption spectrum to the relaxed experimenial silicon and
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germanium absorption spectrum. The proportionality constants trace back to equations
(4-25) and (4-26). Both equations use the same proportionality constant for a given
conduction band minima. Thus, the two constants of proportionality correspond to A*
and A" describing absorption events from the valence band to the X valley conduction
band minimum and L valley conduction band minimum respectively.

One of the limitations of this model is its assumption that the all the band extrema
are parabolic. While this is a reasonable assumption at the bottom of a band, it is not a
good assumption for the effective density of states deep within the band. Thus, the
calculation of the absorption coefficient will be more accurate for energies just greater
than the band gap than for much larger (hv-E,) values. In calculating the transition
density of states the model also assumes that the materiai is intrinsic. This is a reasonable
assumption since the material in question is in the depleted region of the P-I-N junction.
This model being based directly on the calculation of strain perturbed band gap is also

limited by the extrapolation and interpolation of constants discussed previously.

4.3.5 Discussion

The absorption coefficient at a particular wavelength can be graphically
represented in a form similar to the band gap map. Figure 4-10 shows graphically the
absorption coefficient of silicon-germanium as a function of strain and composition at a
wavelength of A=1.3 um. The trends in the absorption coefficient map are very similar to
the trends of the band gap. For alloys with germanium fraction less than 0.85, strain
(tensile and compressive) is effective in increasing the absorption coefficient. For higher
Ge fractions, the absorption coefficient decreases with tensile strain and increases with
compressive strain. This occurs because the states in the strain-split band minimum are
at too high an energy to participate in electron transitions.

Similar trends are observed for the absorption coefficient at A=1.55 pum as shown
in Figure 4-11. High germanium fractions are needed to detect light at A=1.55 pm. The
increase in band gap of pure germanium under biaxial compression ir the (100) is of
minor consequence at A=1.3 um because the absorption coefficient is sufficiently high

(o> lO"/cm). However at 1.55 pm the absorption coefficient is smaller and the
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compressive strain shifts the direct band gap to higher energies, such that 1.55 um
radiation is no longer as strongly absorbed as in relaxed germanium.

The results of the model suggest that moderate (~1%) tensile and compressive
strain can be an effective mechanism by which to lower the bandgap and increase the
absorption coefficient. Figure 4-11 shows the absorpticn spectra for relaxed and 1%
compressively strained alloys. Strain is most effective for silicon-rich alloys because the
main electron transition involves the strain-split X-valley. Strain is also mcre effective in
increasing the absorption coefficient at photon energies near the band gap of the alloy.
For example in Figure 4-11a the difference between absorption coefficient for relaxed
and 1% compressively strained SigsGeps diminishes at shorter photon wavelengths
(larger energies). For photon energies that exceed the band gap energy and the
conduction band splitting energy (hv>E,+AE,), the strain-spiit X-valley conduction band

does not play a role in increasing the absorption coefficient.
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Figure 4-10: Schematic of the absorption coefficient of SiGe as a function of
strain and composition at a wavelength of A=1.3 pm. Unshaded areas represent
strain and composition combinations that are achievable using strain-balanced
superlattice structures.
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