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Introduction

Ferromagnetic shape memory alloys (FSMAs) have received attention recently
because of their ability to produce large strains in the presence of an external magnetic
field. These strains can be an order of magnitude larger than those produced by alloys
with a strong magnetostrictive coupling. Terfenol-D has produced strains as large as
0.24% while the FSMA Ni-Mn-Ga has demonstrated strains of 6%.[1] This order of
magnitude difference in strain results from the operation of dissimilar mechanisms, the
first is produced by typical magnetostriction and the second results from the reorientation
of martensite twins.

FSMAs that produce large field induced strains have a twinned martensite
structure with high magnetocrystalline anisotropy. When subjected to a magnetic field,
the Zeeman energy causes a material to align its magnetic moment in the direction of the
field. The magnetocrystalline anisotropy wants to align the field in a certain
crystallographic direction. In FSMAs the path with the lowest energy barrier to
equilibrate these driving forces is twin boundary motion. The boundary moves into the
unfavorably oriented twin and away from the favorably oriented twin (Figure 1).
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As the twin boundary moves the shape anisotropy of the crystal lattice causes
deformation of the material. The axis of easy magnetization lies along a particular
direction(s) in the martensite. This direction corresponds to a different lattice parameter
than the hard magnetization direction(s). So as the twin boundary moves to align the
magnetic moment with the field it is also aligning the lattice parameter that corresponds
to the easy direction. This strains the material by the difference in the lattice parameters.

Another possible mechanism for producing large strains in FSMAs is the field-
induced austenite to martensite phase transformation. This phase transition is another
typical characteristic of FSMAs, although it is usually activated thermally or
mechanically. The high crystal symmetry austenite phase has a different lattice
parameter than the martensite phase. So phase boundary motion will also strain the
material (Figure 2). This paper presents a simple phenomenological model that
demonstrates magnetic field induced twin boundary motion and austenite-martensite
phase transformation, resulting in large recoverable strains.
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Figure 2: Field induced phase boundary motion

This paper investigates the specific case: unconstrained deformation of single
crystal multiphase iron palladium (FePd) when subjected to a magnetic field. First a
description of the austenite and martensite phases is presented, then an overview of the
governing energetics and finally an analytical quantitative analysis of the strain as a
function of external magnetic field.

Austenite and Martensite Phase In FePd

FePd is a promising FSMA for device applications. FePd has high
magnetocrystalline anisotropy, which facilitates twin boundary motion. Also FePd is
ductile in both phases. This improves reliability for actuator type devices over brittle Ni-
Mn-Ga.

The root cause of the shape memory effect (SME) in FePd is an austenite to
martensite solid state phase transformation. In the austenite phase FePd has a face
centered cubic (FCC) crystal structure and in the martensite phase, a face centered
tetragonal structure (FCT) (Figure 3).
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Referring to figure 3, it can be seen that the martensite phase is elongated on two sides
and shortened on one side when compared to the austenite phase. This microscopic
change of shape causes macroscopic deformations as the entire sample switches phase. It
is also important to note the easy axes of magnetization. The martensite phase of FePd
demonstrates high magnetic anisotropy, favoring to magnetize in the elongated
directions, indicated with arrows [a 0 0]. Conversely austenite has low magnetic
anisotropy with hard directions along [ao 0 0], again indicated with arrows.

The martensite phase creates internal stresses as it nucleates and grows within the
austenite phase. The stresses become large enough to necessitate compensation. This
can be accomplished by twinning or slip (Figure 4).
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Both methods of compensation have energy barriers and equilibrium conditions. The
energy barrier to twin is smaller than the energy required to slip. This can be shown
analytically and is experimentally observable.[3,4] Fortunately FePd prefers to twin
rather than slip because it is precisely this that allows for large strains in the martensite
phase.

FePd can also produce large strains through an austenite-martensite phase
transformation. Here it is phase boundary motion that consumes the unfavorable phase.
The energetics of this transformation are detailed in the following sections.

Governing Energetics

When considering the preferred state of a system, energy equilibrium is the place
to start. The current system has 3 main types of governing energy; magnetic, mechanical,
and latent heat. Each type of energy is now discussed in detail.

Magnetic Energy

The possible contributors to magnetic energy in a system of this type are;
exchange, domain wall, magnetostatic, magnetoelastic, magnetocrystalline anisotropy
and Zeeman energy. As alluded to previously, the most important energies of this
specific system are magnetocrystalline anisotropy and Zeeman. What follows is
justification for this assumption and quantitative representations of these energies.



Exchange energy represents the energy cost of adjacent magnetic moments
pointing in different directions. For this model it is assumed that the martensite twins and
austenite are single domain, therefore there will be no exchange energy contribution from
within each variant/phase. However domains do exist between twins and between
phases. It has been shown that the exchange energy is significant when compared to
other energies of this system. In fact the exchange energy is large enough so that creating
a single variant/single phase sample is rarely possible. So this energy will be a constant
in the system. For this reason the change in energy of twin/phase boundary motion will
not be a function of the exchange energy and can be omitted.[2]

Domain wall energy is a combination of exchange energy and magnetocrystalline
anisotropy or magnetostatic energy. The domain wall reduces the magnetocrystalline
energy by rotating the magnetic moment gradually over the thickness of the wall. This
comes at a cost of orienting the magnetic moment in an energetically undesirable
crystallographic orientation or by creating free poles at wall boundaries. The energy
contribution from domain walls can be neglected for the same reason as neglecting
exchange energy given above.

Magnetostatic energy arises from poles at an interface. Here it is assumed that the
normal component of magnetization is continuous across the twin/phase boundary
interface. This has been proved for the twin boundary case.[4] Therefore magnetostatic
energy contribution is nil.

Magnetocrystalline anisotropy arises from the magnetization in a material having
a preferred crystallographic direction. As the magnetization moves away from this
direction, by an off axis field, the material becomes harder to magnetize. So for a given
magnetization the energy is lowest in the easy direction and highest in the hard direction.
The magnetocrystalline anisotropy energy per unit volume is quantified to leading order
as
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Magnetoelastic energy is magnetocrystalline anisotropy that is proportional to the strain
of the lattice. Because the strain from twin/phase boundary motion is much larger than
the lattice strain this energy can be neglected.

The Zeeman energy is the potential energy of a magnetic moment in a magnetic
field. This is the energy that tends to align the magnetic moment with the applied field.
Written as energy per unit volume, the Zeeman energy is quantified as

3) u;=-M;.H
Mechanical Energy
The mechanical energy associated with this system is the well know continuum

mechanics strain energy. This energy opposes the motion of twin/phase boundaries. It is
quantified as
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Latent Heat

Latent heat is the energy associated with the phase change in a material. The
austenite to martensite transformation is exothermic. The energy per unit volume is
simply

erg

uL=10.79(—

©)) cm? ) [5]

Analysis

For the purposes of this paper further assumptions can be made to simplify the
energetics. First a 2D simulation reduces the number of variants for the analytical
analysis. The analysis presented is, in general, valid in full 3D form however it is
cumbersome to deal with all variants in the analytical calculations. This assumptions
lead to the following arrangement (Figure 5).
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Figure 5: 2D FePd martensite variants (f1, f2) and austenite phase (fa)

To further simplify the calculation the applied field (H) is along the direction of easy
magnetization of variant 1, and the twinning angle between variants is 90°. Here f1, 2
and fa are the respective volume fractions. With these simplifications the total Zeeman
energy for the system becomes

(6) U,=-Mg;Hfa-M,,.Hf1l

Here the subscripts “a” and “m” refer to austenite and martensite respectively. It is
assumed that the anisotropy of the martensite phase is strong enough to keep the
magnetic moment of variant 2 orthogonal to the field, therefore it does not contribute to
the Zeeman energy.

The simplifications lead to a magnetocrystalline anisotropy energy of
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Here the cosine of the angle between the field and magnetization is written as a ratio of
the Zeeman and magnetocrystalline anisotropy energies. Martensite variant 1 is
magnetized along its easy direction and therefore does not contribute to the anisotropy
energy.

With the reduced dimensions, a good approximation to the strain energy is

1
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* (floa+ f2o0c + fao ao)
ey - ((flc+£f2 a+ faao) - (floc+ f2o0a + facao))
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Here “Ceff” is the effective material modulus (Ceff = 100*10° Pa), “fxo” denotes an
initial volume fraction (fxo = 1/3), “c” is the shortened martensite lattice parameter (¢ =
3.630*107' m), “a” is the elongated lattice parameter (a = 3.822*10"° m), and “a0” is the
austenite lattice parameter (ao = 3.756* 107 m).[5]

The final energy contribution, the latent heat, is written as

9) UL = ug, (fa- fao)

Combining equations 6-9 gives the total energy of the system.
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The minimum of equation 10 subject to the constraint

(11) fl+£f2+fa=1

gives the variant/phase distribution of the material as a function of the applied field.
Once this is known, useful information like average magnetization and strain is easily
extracted. This problem is solved using the Lagrangian multiplier method. The full
solution is given in Appendix A, results are given in the following section.

Applying the Lagrangian multiplier method to equations 10 &11 results in three
equations of 5 variables

(12)



21.99465x10% + 1.99063x 10 £1 + 1.98799x 10 £2 +2.00532x 10%? fa - 1220. H== 2 f1 lam,
~1.99465x 10 +1.98799x 10" £1 + 1.99063x 10% £2 +2.00532x 102 fa + 1.0912 H? == 2 £2 lam,
~2.0106x10™ +2.00532x10% £1 + 2.00532x 10 £2 +2.02147x 102 fa - 1080. H- 58.32 H® == 2 fa lam
A plausible value for lambda can be found by remembering the initial condition (Ho = 0,

flo = f20 = fao = 1/3). Then with the value of lambda known, the volume fractions can
be solved for as a function of the field.

Results

For low magnetic fields (H ~ 1 kOe) the volume fraction distribution is shown in
figure 6.
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Figure 6: Martensite variant and austenite volume fraction in the low field regime

This figure shows that low magnetic fields have a large effect on the martensite variant
distribution and little effect on the phase distribution. The f2 variant is completely
consumed (This is a good approximation with the qualification that exchange energy
prohibits complete consumption) by the f1 variant, while the fa fraction remains
essentially constant. It is obvious that the volume fraction of f2 cannot be negative
therefore a second high field solution was generated where the initial volume fractions
are flo =2/3 and fao = 1/3. The solution to this high field situation is given in appendix
B. The high magnetic field (H ~ 1000 kOe) volume fraction distribution is shown in
figure 7.
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Figure 7: Martensite variant and austenite volume fraction in the high field regime

This figure shows that a high magnetic field can produce a phase transformation. The
austenite phase is completely consumed (This is a good approximation with the
qualification that exchange energy prohibits complete consumption) by the single variant
martensite phase.

With the variant fractions known, the strain can be calculated using the definition
provided for equation 8. The low field strain is shown in figure 8.
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Figure 8: Strain in the low magnetic field regime

This figure shows the expected positive strain in the direction of applied field and
negative strain in the orthogonal direction. Also it can be seen that the strain is nearly
linear with the applied field in the low field regime. The high field strain is shown in
figure 9.



—H (kOe)

1000 Z0on 2000 3000 so000

Figure 9: Strain in the high magnetic field regime

This figure shows a continued positive strain in the field direction and contraction
orthogonal to the field. In the high field regime the material has a nonlinear strain
response to the applied field. The total strain for the given initial conditions is ~ 3%.

Discussion

As seen in figures 8 and 9, FePd has 2 distinct strain response regimes for an
applied magnetic field. This is the result of 2 different mechanisms. In the low field
regime the strain is a result of twin boundary motion and in the high field regime the
strain is a result of phase boundary motion. This is determined from the fact that the
austenite volume fraction remain approximately unchanged in the low field regime and in
the high field regime there is only one variant of martensite so the only mechanism to
create strain is phase boundary motion. With this consideration, the fa terms can be
removed from equation 10 to simplify the energetics of the low field regime. This
modification clarifies the energetics to
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The Zeeman energy of the f1 variant and the magnetocrystalline anisotropy energy of the
2 variant drive the twin boundary while the elastic energy opposes the motion.
Similarly, removing the f2 terms from equation 10 clarifies the energetics of the high
field regime.

fa H? 1
U= —leMsm+a7Mga + (fa - fao) u, - faHMq, + 2 Cess (e§+e§)

(14) 4K



The Zeeman energy of the f1 variant, and magnetocrystalline anisotropy energy and the
latent heat of fa drive the phase boundary while the Zeeman energy of fa and elastic
energy oppose the motion. Equations 13 and 14 quantify the energetics of the two
mechanisms that drive the magnetically induced strain in FePd.

Conclusion

A simple model has been presented to describe the field induced strain in FSMA
FePd. The model demonstrates two regimes of strain response. The active mechanism in
the low field regime is twin boundary motion while the mechanism in the high field
regime is phase boundary motion.

For evenly dispersed initial volume fractions the material strained ~3% while
approximately fully transforming into the favorably oriented martensite variant. The
amount of strain induced in the low and high magnetic field regimes is ~1.5%. The low
field regime is 3 orders of magnitude more efficient at producing strain when compared
to the high field regime (by comparing the applied fields). However the high field
response is still valuable because it can be used to fully transform the material into the
martensite phase, which is not always possible using typical metallurgical techniques.
Also this allows the material to realize its full strain capabilities.
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Appendix A

Volume Distribution Solution - Low Magnetic Field

m Programming Options

Needs["OptimizationToolbox QuadraticProgramming™"];
Off [General: :"spelll"]

Off[General: :"spell"]

<< Calculus VectorAnalysis"

= Energies
Zeeman energy

Uzl = - (£f1) MsmH ;
Uz2=0;

Uza = - (fa) Msa H;
Uz = Uzl +Uz2 + Uza;

Anisotropy energy

Ual=0;

Ua2 = (£2) Ku (MsmH/2 /Ku) *2;
Uaa = (fa) K1 (MsaH/2 /K1) *2;
Ua = Ual + Ua2 + Uaa;

Strain energy relative to initial condition
ex= ((fla +f2c+ faao) - (floa+f2o0c+faocao)) / (floa+ f2o0c + fao ao) ;
ey=((flc+£f2 a+ faao) - (floc+f20a+ facao)) / (floc+ f20a + faocoao) ;
Ue = 10 *xCeff (ex*"2 +ey*2)/2;

Latent Heat

Ul = (fa - fao) L;

Total energy
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U =Simplify[Uz + Ua + Ue + Ul]

5Ceff
(c (f1-flo) +a (f2 - f20) +ao (fa- fao))? , (@ (f1-flo) +c (f2-£20) +ao (fa - fao))?
(cflo+af2o0+ao fao)? (aflo+cf20+ao fato)2
fa H® Msa® £2 H? Msm?
(fa - fao) L—faHMsa+T—leMsm+W—

= Langrangian Multiplier Method
Equating the gradient of the extreme value function to the gradient of the constraining function multiplied by lambda

Gradient of the energy equation with respect to the variant fractions

GradU = Grad[U, Cartesian[fl, £2, fa]]

2c (c (fl-flo) +a (f2-£f20) +ao (fa- fao))
(cflo+af20+ao fao)2

2a(a(fl-flo) +c (f2-£f20) +ao (fa-fao))

(aflo+cf20+ao fao)2

2a (c (fl-flo) +a (f2-£f20) +ao (fa - fao))
2

{5cett (

) — H Msm,

5Ceff (
(c flo+af20+ao fao)

2c (a(fl-flo) +c (f2-£f20) +ao (fa- fao)) ) . H? Msm?

(aflo+c f20 +ao fao)? 4Ku '

2ao0 (c (f1 -flo) +a (f2 - f20) +ao (fa- fao))
5 Ceff | >
(cflo+af20+ao fao)
_ _ _ 2 2
2ao0 (a (fl1-flo) +c (£2 - £f20) +a§ (fa - fao)) ) +L- HMsa + H- Msa }
(a flo+c f20 + ao fao) 4 K1

Gradient of the constraint equation

GradF = Grad[lamx (£12 + £22 + fa? - 1) , Cartesian[fl, £2, fa]]

{2 fllam, 2 £2 lam, 2 fa lam}

Equating the gradient of the extreme value function to the gradient of the constraining function

eqgns = {GradU[[1]] == GradF[[1]], GradU[[2]] == GradF[[2]], GradU[[3]] == GradF[[3]]}

2c (c (fl-flo) +a (f2-£f20) +ao (fa-fao))

(c flo +a f20 + ao fao)?
2a(a(fl-flo) +c (f2-£f20) +ao (fa- fao))
(a flo+c f20 +ao fao)?

{5cefst (

) -HMsm==2 fl lam,

5 Ceff ( 2a (c (fl-flo) +a (f2 - £f20) +aoz(faffao))
(c flo+a f20 +ao fao)
2c (a (fl-flo) +c (f2 - f20) +ao (fa - fao)) ) N H® Msm? e 2 £2 1am
(a flo+c f20+ao fao)? 4 Ku !
5 Ceff ( 2a0 (c (fl-flo) +a (f2 - f20) +a2 (fa - fao))
(cflo+af20+ao fao)
2ao (a (fl-flo) +c (f2-£f20) +ao (fa- fao)) ) 4L - HMsa + H? Msa? =5 falam}
(aflo+c f20+ao fao)? 4 K1
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m Numerical Parameters [5]

Lattice parameters
ao=3.756%10710 (xmx) ;
a=3.822%10"1° (xmx) ;
c=3.630%10"1% (smx);

Saturation magnetization relative to each variant

Msm = 1220 (xemu/cm3%) ;
Msa = 1080 (xemu/cm3*) ;

Anisotropy constants

Ku=3.41%10° (xerg/cm3x) ;
Kl = -5%103 (xerg/cm3«) ;

Effective modulus

Ceff =100% 1079 (%xPax) ;
Latent heat fcc-fct

L=10.79 107 (xerg/cm3x) ;

Initial volume fraction

flo=1/3;
f20=1/3;
fao=1/3;

= Solving for Volume Fraction

simpegns[H_] = Simplify[eqns]

{-1.99465%x10'2 +1.99063x10% £1 +1.98799x10%2 £2+2.00532x10%% fa-1220. H==2 f1 lam,
-1.99465%x10% +1.98799%x10%* £1+1.99063x10*2 £2+2.00532x10'% fa+1.0912H® == 2 £2 lam,
-2.0106x10%2 +2.00532x10* £1 +2.00532x10%2 £2 +

2.02147%x10'2 fa-1080. H-58.32H% == 2 fa lam}

Solving for the variant fractions that minimize the energy as a function of applied field
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fsol = Solve[simpeqns[H], {fl1, £2, fa}];
fil[H , lam ] =£f1 /. fsol[[1, 1]]
f2[H _, lam_] =£f2 /. £sol[[1, 2]]
fa[H_, lam_] =fa /. £sol[[1, 3]]

-4.98672x1071% (-2.0106%x10'? -1080. H- 58.32 H?) +
(4.98672x107*% (-1. (-1.98799x10% (-2.0106x10%? -1080. H-58.32H?) +
2.00532x10% (-1.99465x10% +1.0912H?))
(3.98656x10% -2.00532x10%% (1.99063x10*2 -2. lam)) +
(2.00532x10% (-1.99465x10%? -1220.H) -1. (-2.0106x10'?-1080. H- 58.32 H?)
(1.99063%x10'2 - 2. lam)) (5.29631x10%' - 4.01065%x10'? 1lam))
(2.02147%x10'2 -2. lam)) / (-5.6871x10%° + 6.35566x 103" lam -
4.81497x10%° lam® +1.60426x 103 1am®) +
1. ((-1.98799%x10% (-2.0106x10**-1080. H-58.32H?%) +
2.00532%x10% (-1.99465%x10*% +1.0912H?)) / (5.29631x10%! - 4.01065%x10%2 1am) -
(1. (-1. (-1.98799x10%*2 (-2.0106x10*2-1080. H-58.32H?) +
2.00532x10% (-1.99465x10% +1.0912H?))
(3.98656x10% -2.00532x10%% (1.99063x10*2 -2. lam)) +
(2.00532x10%% (-1.99465x10*% -1220.H) -1. (-2.0106x10'2-1080. H- 58.32 H?)
(1.99063x10*2 - 2. lam)) (5.29631x10%" - 4.01065x10%? lam))
(4.02133%x10%% -1.98799%x10% (2.02147x10% -2. lam))) /

((5.29631x10%1 - 4.01065x10%2 lam)
(-5.6871x10%° + 6.35566x10°% lam-4.81497x10%° lam® + 1.60426x 103 1lam®)))

—(1.(-1.98799x10*? (-2.0106x10* -1080.H-58.32H%) +
2.00532%x10%% (-1.99465%x10%2 +1.0912H?))) / (5.29631x10%1 - 4.01065x 102 lam) +
((-1. (-1.98799%x10%*2 (-2.0106x10*? -1080. H-58.32H%) +2.00532x10%% (-1.99465x10%% +
1.0912H?)) (3.98656x10%" -2.00532x10%2 (1.99063x10'2 -2, lam)) +
(2.00532%x10*? (-1.99465x10*2 -1220.H) -1. (-2.0106x10*2-1080. H- 58.32H?)
(1.99063x 102 - 2. lam)) (5.29631x10°' - 4.01065x10'? 1lam))
(4.02133%x10%%-1.98799x10% (2.02147x10% -2. lam))) /

((5.29631x10%1 -4.01065x10%2 lam)
(-5.6871x10%° + 6.35566x10°% lam-4.81497x10%° lam® + 1.60426x 103 1am®))

— (1. (-1. (-1.98799x10%2 (-2.0106x10*>-1080. H-58.32H?) +
2.00532x10% (-1.99465x10% +1.0912H?))
(3.98656x10% -2.00532x10% (1.99063x10*% -2, lam)) +
(2.00532x10%% (-1.99465x10*2 -1220.H) -1. (-2.0106x10'2-1080. H- 58.32H?)
(1.99063%x10'2 -2, lam)) (5.29631x10%' - 4.01065x10' 1lam))) /
(-5.6871x10%° + 6.35566x10°* lam-4.81497x10%° lam® + 1.60426x 10> lam®)

Solving for lambda
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soll = Solve[f1[0, 1lam] ==1/3, lam]
sol2 = Solve[f2[0, lam] == 1/ 3, lam]
sola = Solve[fa[0, 1lam] ==1/ 3, lam]
lambda = 1lam /. soll[[2]]

{{lam—> -9.32668x10%}, {lam— 1.32056x10°}, {lam—1.32056x10°}, {lam—>1.73996x10%°}}

{{lam—> -9.32668x10°}, {lam—> 1.32056x10°-789.1331},
{lam—> 1.32056x10° + 789.1331}, {lam—>1.73996x10°}}

{{lam—> -7.92756%x10°-1.60973x10'° 1}, {lam—>-7.92756x10% +1.60973x10'% 1}}

1.32056x10°

Checking the initial volume fraction distribution

£1[0, lambda]
£2[0, lambda]
fa[0, lambda]

0.301865
0.335981

0.362344

Volume fraction distribution vs. applied field
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Plot[{f1[H, lambda], £2[H, lambda], fa[H, lambda]},
{H, 0, 1}, AxesOrigin - {0, 0}, AxesLabel -» {"H (kOe)", "£"}]

= Graphics =

Strain vs. applied field
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exh[H ] = ((f1[H, lambda] a + £2[H, lambda] c + fa[H, lambda] ao) - (floa+ f20c + fac ao)) /
(floa + f2o0c + faoc ao) ;

eyh[H ] ((£f1[H, lambda] c + £2[H, lambda] a + fa[H, lambda] ao) - (floc + f20a + facoao)) /
(floc + f20a + fao ao) ;

Plot[{exh[H], eyh[H]}, {H, 0, .85}]
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- Graphics -
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Appendix B

Volume Distribution Solution - High Magnetic Field

m Programming Options

Needs["OptimizationToolbox QuadraticProgramming™"];
Off [General: :"spelll"]

Off[General: :"spell"]

<< Calculus VectorAnalysis"

= Energies
Zeeman energy

Uzl = - (£f1) MsmH ;
Uz2=0;

Uza = - (fa) Msa H;
Uz = Uzl +Uz2 + Uza;

Anisotropy energy
Ual=0;
Ua2=0;
Uaa = (fa) K1 (MsaH/2 /K1) *~2;
Ua = Ual + Ua2 + Uaa;
Strain energy relative to initial condition
ex= ((fla + faao) - (floa+ f2o0c+faocao)) / (floa+ f2o0c + faoao);
ey= ((flc+ faao) - (floc+ f20a+ faocao)) / (floc+ f20a + faoao);
Ue = 10 *Ceff (ex*"2 +ey*2) /2;
Latent Heat

Ul = (fa - fao) L;

Total energy
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U =Simplify[Uz + Ua + Ue + Ul]

B B B 2 B _ B 2
5 Ceff (c (f1-flo) —a f2o0+ao0 (fa- fao)) . (a (fl1-flo) —-cf20+ a0 (fa- fao))

(cflo+af2o0+ao fao)2 (aflo+cf20+ao fao)2
2 2
(fa-fao) L- faHMsa+ %& - f1 HMsm

m Langrangian Multiplier Method

Here the equation to be minimized is the energy equation and the constraining equation is the volume fractions

Gradient of the energy equation with respect to the variant fractions

GradU = Grad[U, Cartesian[fl, fa, z]]

{SCeff(Zc(c(fl—flo)—af20+ao(fa—fao)) . 2a(a(fl—flo)—cf2o+ao(fa—fao)))_
(c flo+a f20 + ao fao)? (a flo+c f20 + ao fao)?
H Msm,
50eff(2ao (c (fl—flo)—af20+ao(f2a—fao)) . 2 ao (a(fl—flo)—cf20+ao(f2a—fao)) )+
(c flo+a f20+ao fao) )

(aflo+c f20+ao fao
H? Msa?
L-HMsa+ —pm—, o}

Gradient of the constraint equation

GradF = Grad[lam* (£12 + £a® - 1) , Cartesian[fl, fa, z]]

{2 f1 lam, 2 fa lam, 0}

Equating the gradient of the extreme value function to the gradient of the constraining function multiplied by lambda

eqns = {GradU[[1]] == GradF[[1]], GradU[[2]] == GradF[[2]]}

{5Ceff ( 2c (c (fl-flo) -~af2o0+ao (fa-fao)) N 2a (a (fl-flo) -cf2o0+ao (fa-fao)) ) B
(cflo+af2o0+ao fao)2 (aflo+cf20+ao fao)2
HMsm==2 f1l lam,
5 Coff ( 2a0 (c (fl1-flo) —af20+ao (f2a—fao)) . 2a0 (a (f1-flo) -cf20+ao (f2a—fao)) ) .
(cflo+a f20+ao fao) )
H? Msa?

L - HMsa + IRl ::Zfalam}

(aflo+cf20+ao fao

m Numerical Parameters [5]

Lattice parameters
ao =3.756%1071° (sm«);
a=3.822%10"10 (xmx);
c=3.630%1071 (smx);

Saturation magnetization relative to each variant
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Msm = 1220 (*emu/cm3«) ;
Msa = 1080 (*emu/cm3%) ;

Anisotropy constants

Ku=3.41%10% (xerg/cm3x) ;
Kl = -5%103 (xerg/cm3«) ;

Effective modulus

Ceff =100% 1079 (%xPax) ;
Latent heat fcc-fct

L=10.79 %107 (xerg/cm3x) ;

Initial volume fraction

flo=1/3;
f20=1/3;
fao=1/3;

= Solving for Volume Fraction

simpegns[H_] = Simplify[eqgns]

{-1.99465%x10'2 +1.99063x10%? f1+2.00532x10%% fa-1220. H==2 f1 lam,
-2.0106x10%2 +2.00532x10* £1+2.02147x10'? fa-1080. H-58.32H? == 2 fa lam}

Solving for the variant fractions that minimize the energy as a function of applied field

fsol = Solve[simpeqgns[H], {f1l, fa}];
f1[H_, lam_] =£f1/. £sol[[1, 1]]
fa[H , lam_] =fa /. fsol[[1, 2]]

-4.98672%x1071° (-2.0106x10%2-1080. H-58.32H%) +
(4.98672x1071 (2.00532x10%% (-1.99465x 10 -1220. H) -
1. (-2.0106x10* -1080.H-58.32H%) (1.99063x10**-2. lam))
(2.02147%x10% - 2. lam)) / (-2.66948x10%" +8.0242%x10% lam- 4. lam?)

— (1. (2.00532x10% (-1.99465%x10'? -1220. H) -
1. (-2.0106x10* -1080.H-58.32H%) (1.99063x10*?-2. lam))) /
(-2.66948x 10" +8.0242x10% lam- 4. lam?)

Solving for lambda
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soll = Solve[f1[0, 1lam] == 2/ 3, lam]
sola = Solve[fa[0, 1lam] ==1/ 3, lam]
lambda = 1lam /. sola[[2]]

{{lam—>1.15192x10°}, {lam—>5.08912x10'}}
{{lam—>-1.011x10*?}, {lam—1.15033x10°}}

1.15033x10°

Checking the initial volume fraction distribution

£1[0, lambda]
fa[0, lambda]

0.666995

0.333333

Volume fraction distribution vs. applied field

Plot[{f1[H, lambda], fa[H, lambda]}, {H, 1, 5000},
AxesOrigin - {0, 0}, AxesLabel » {"H (kOe)", "£f"}]
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- Graphics =

Strain vs. applied field
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exh[H ] =

((£1[H, lambda] a + fa[H, lambda] ao) - (floa + f2oc + facoao)) / (floa + f20c + fao ao) ;
eyh[H_] = ((f1[H, lambda] c+ fa[H, lambda] ao) - (floc + f20a + faoao)) /

(floc + f20a + fao ao) ;
Plot[{exh[H], eyh[H]}, {H, 1, 5000}, AxesOrigin- {0, 0}]
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