
Elastic-Plastic Fracture Mechanics


Professor S. Suresh




Fracture 
Elastic Plastic 

Previously, we have analyzed problems in which the plastic zone 

was small compared to the specimen dimensions (small scale 

yielding). In today’s lecture we present techniques for analyzing 

situations in which there can be large scale yielding, and 

determine expressions for the stress components inside the 

plastic zone. We will begin with a discussion of the J integral. 
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J Integral 
Derivation 

The J integral is a line integral (path-independent) around the 
crack tip. It has enormous significance in elastic-plastic fracture 
mechanics. Key Reference: J. R. Rice, Journal of Applied 
Mechanics, 1968. 

(Related works: Eshelby, Progress in Solid State Physics 1956; 

Sanders, Journal of Applied Mechanics, 1960; Cherepanov, 

International Journal of Solids and Structures, 1969) 
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J Integral 
Derivation 

Continued 

Consider the path around the crack tip shown below:
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J Integral 
Derivation 

Continued 

We will use the following variables:


a = crack length.


S = a curve linking the lower and upper crack surfaces.


ds = an element of arc on this curve.


T = traction vector on this curve defined in relation to an outward

normal unit vector, i.e. T � n � �.


u = corresponding displacement vector.


We consider a small strain analysis; we neglect any


deformation-induced blunting of crack tip.
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J Integral 
Derivation 

Continued 

We use the J2 

deformation theory of plasticity (equivalent to 

non-linear elasticity). The (reversible) stress-strain response is 

depicted schematically below: 
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J Integral 
Derivation 

Continued 

For proportional loading J2 

deformation theory and J2 

flow 
theory (incremental theory of plasticity) give results that are 
comparable (i.e. for monotonic loading, stationary cracks). 

Not appropriate for situations where significant unloading occurs.


The total mechanical potential energy of the cracked body is 

uM 

� ue 

+ uapp 

This represents the sum of the stored strain potential energy and 

the potential energy of the applied loading. 
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Derivation

J Integral


Continued 

Z Z 

uM 

� wdA , T � uds 

A S 

In the previous integral: 

w � strain energy density (per unit volume); recall that 

@w 

�ij 

� : 

@� ij 

dA an element of cross section A within S. 

We now evaluate the derivative of the mechanical potential 

energy, uM, with respect to crack length. 
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Derivation

J Integral 

Continued 

� � Z


duM 

@u 

d, � wdy , T � s 

da S 

@x 

� J 

J represents the rate of change of net potential energy with 

respect to crack advance (per unit thickness of crack front) for a 

non-linear elastic solid. J also can be thought of as the energy 

flow into the crack tip. Thus, J is a measure of the singularity 

strength at the crack tip for the case of elastic-plastic material 

response. 
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Derivation

J Integral


Continued 

For the special case of a linear elastic solid, 

d �PE� dUM 

J � G � , � ,

da da 

2 

K 

, � 

� 1 , � 

2 

E 

This relationship can be used to infer an equivalent KIc 

value 

from JIc 

measurements in high toughness, ductile solids in which 

valid KIc 

testing will require unreasonably large test specimens. 
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J Integral 
Derivation 

Continued 

Consider two different paths around the crack tip:
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Derivation

J Integral


Continued


Jalong S1 

� Jalong S2 

The J Integral is independent of the path around the crack tip. 

If S2 

is in elastic material, 

2 

K 

, � 

JS2 

� 1 , � 

2 

E 
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HRR field


We now consider the Hutchinson, Rice, Rosengren (HRR)

singular crack tip fields for elastoplastic material response.

(Recall Williams solution assumes linear elastic material

behavior).

Assume: Pure power law material response:


� � n 

� � 

� � 

�0 

�0 

� = material constant, �0 

= reference yield strength, n = strain 
hardening exponent, �0 

� reference yield strain � �0�E. 

For linear elastic material n � 1, for perfectly plastic response 

n �1. 
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Continued

HRR field


With these assumptions, the crack tip fields (HRR field) can be

derived. (Ref: J.W. Hutchinson, JMPS, 1968 and J.R. Rice and

G.F. Rosengren, JMPS, 1968.)


1 

J 

n+1 

� � 

~�ij 

� �0 

�ij 

��; n � 

��0�0Inr 

n 

J 

n+1 

� � 

~� ij 

� ��0 

�ij 

��; n � 

��0�0Inr 

n 

J 

n+1 

� �


1 

n+1 ~u i 

� ��0 

r ui 

��; n � 

��0�0Inr 

The function In 

has a weak dependence on n. 
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CTOD 

The variation in crack tip opening displacement �t 

or (CTOD) for 
different material response is depicted below: 

The crack tip opening displacement depends on distance from 

the crack tip. We need an operational definition for CTOD. 
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CTOD 

The definition of �t 

is somewhat arbitrary since the opening 

displacement varies as the crack tip is approached. A commonly 

used operational definition is based on the 45� construction 

depicted below (see C.F. Shih, JMPS, 1982). 

cSMA �2000 MIT Fatigue and Fracture 15 

Administrator
 



CTOD


J 

�t 

� dn 

�0 

dn 

is a strong function of n, and a weak function of �0�E. 

Plane Strain: 

dn 

� 0:3 , 0:65 �0:65 for n !1� 

Plane Stress: 

dn 

� 0:5 , 1:07 �1:07 for n !1� 
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CTOD


Presuming dominance of HRR fields 

J J 

�

�t 

� dn 

� 

0 

�0 

For Small Scale Yielding (SSY)


2 

K 

, � 

J � 

I 1 , � 

2 

E , � 

2 

K 1 , � 

2 

�t 

� dn

I 

E �0 
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CTOD


Importance/Applications of CTOD:


� Critical CTOD as a measure of toughness.


� Exp. measure of driving force.


� Multiaxial fracture characterization.


� Specimen size requirements for KIc 

and JIc 

testing. 
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J-Dominance 

Just as for the K field, there is a domain of validity for the HRR 

(J -based) fields. 
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J-Dominance 

Under plane strain and small scale yielding conditions, it has 
been found that: 

1


r0 

� p

4


For J dominance the uncracked ligament size b must be greater


than 25 times the CTOD or � 25 � J�� 0 

. The variation in stress


ahead of the crack is depicted on the following page:
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J-Dominance 
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K and 

J-Dominance


Consider a low strength steel with �0 

� 350 MPa, 

KIc 

� 250 MPa
p

m and E � 210 GPa. What are the Minimum 
specimen size requirements for valid KIc 

and JIc 

measurements? 
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K-Dominance


ASTM standard E399 (1974) for KIc 

testing: 

� � 2 

KIc 

a; b; t � 2:5 

� 0 

Substitute the known values for � and KIc 

. Find that 0 

a; b; t � 1:28 m! �� 50 inches�
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J-Dominance


For JIc 

testing, the condition requires that for a deeply cracked 
compact tension or bend specimen: 

JIc 

KIc 

, 
1 , � 

2 

� 

b � 25 � 25 

� 0 

E � 0 

b � 0 :02 m


Specimen size requirements for J testing are much less severe 
than for K testing. 
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J-Dominance


The measured JIc 

value may be converted to equivalent KIc 

value. The validity of this approach has been verified by extensive 

testing. 
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J-Dominance 

Example: notched bar loaded axially (induces bending and 

stretching) 
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J-Dominance 
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