Problem 1.1

(a)

We approximate the passenger cabin as a cylinder of radius r and
thickness ¢. Inside the cabin there is a pressure p. The longitudinal
stress and hoop stress are given, respectively, by

pr pr

Olong = Tk Ohoop = _t—

Considering the higher hoop stress as the design stress, we would
like to preserve the value of opeep in the new designs. Suppose 7 is
increased by 50%, then owoop = 1.5pr/t and the thickness ¢ must be
increased by 50% in order to keep onoop constant. Increasing r by
50% could allow (for example) 9 seats to fit across the diameter of
the cabin instead of 6, so the cabin could be made shorter by 33%
if the number of passengers is kept constant. The total amount of
material surrounding the cabin is approximately given by 27rtL,
where L is the length of the fuselage. With the new dimensions,
the total volume of material becomes 2 (1.5r) (1.5¢) (0.67L) or
3mrtL. Thus, using the same material for the fuselage, the weight
would be increased by 50% to achieve the same strength. This
would in turn increase the fuel consumption, as would the in-
creased drag due to larger cross-sectional area. In addition, the
extra weight could require larger wings to achieve more lift. Larger
wings create a larger moment on the attachment point of the wings
to the fuselage, so the strength at that location would need to
be increased, either with reinforcements of a stronger material or
through a tapered wing design which is thicker near the point of
attachment to the fuselage and decreasing in weight with distance
from the fuselage.

If the wall thickness of the fuselage is increased with the radius
to maintain constant strength, the volume of skin material will be
larger, but plane stress conditions would still prevail in the fuselage
skin, since the radius of the fuselage is much greater than the thick-
ness. Since airplanes are generally designed using a defect-tolerant
approach, they are assumed to have a distribution of flaws up to
the smallest size that can be detected through non-destructive
evaluation methods. The larger volume of the aircraft would have
more total flaws, but since the design of aircraft allows for flaws
to exist, this would not change the approach to damage tolerance.



Depending on the shape of flaws and growing cracks, however, the
thickness of the fuselage could have implications for fatigue dam-
age in the aircraft. A thinner skin would be more likely to “leak
before break” whereas a thicker skin could allow a larger crack to
exist, approaching the critical crack length. However, depending
on frequency of maintenance and inspection, the larger flaws could
likely be detected in time.
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12.3

(a) Start with the definition of compliance, C = §/P, which gives
C(a) = a®/24ET in this case. Then we have that

_P2dC P> @ P2

20 = = —
g 2Bda 2B8EI 16BEI
12P2%q?
26 = 16 B2H3E

Now solve for the load P, and find that

3a?

2173 1/2
P = (8gB H E)

Substutitute in the known values for the toughness and the geo-
metric parameters in the problem and find that P = 128.6 N for
2a = 60 mm

(b) From the equation derived above, P = 110.2 N for 2a = 70 mm
and P = 96.5 N for 2a = 80 mm. The load P and the displacement
d are related by the expression:

24E71

P==—

J

So the values of § at failure can be calculated from the known
values of P,.;; to be 0.942 mm, 1.281 mm and 1.675 mm for 2a =
60, 70 and 80 mm, respectively. The plot showing the toughness
locus is shown below.
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(c) Before we were asked to calculate the values of P (and the associ-
ated values of §), given that the toughness G, was known. In this
question, we assume that we have only experimental data in the
form of various values of P and d (the toughness locus), and are
asked to calculate the value of the toughness G,. By estimating
the area bounded by the toughness locus and the P —§ curves for
2a = 70 mm and 80 mm, which represents mechanical potential
energy lost which goes into crack growth, we may write that

2G.BAa =~ area bounded

Where Aa = 5 mm. I found that the area bounded was approxi-
mately 29.6 x 1073 J so that G, = 293 Pa-m, which is close to the
value used to derive the toughness locus.



By the way, students who are very familiar with beam theory may
have noticed that there is a typo in the text. The statement of the
problem and the equation refer to the deflection of the beam ¢; in
these expressions ¢ should be replaced by §/2. This will change
the values of P, and ¢ you obtain, and your plot of the toughness
locus will be different, but you will obtain the same result for the
toughness using the method described in part (b).

Sa. Increase in the ductile-brittle transition temperature (DBTT) of a low strength
plain carbon steel:

1) Chemical environment: Increasing amounts of embrittling agents,
such as hydrogen, increases the DBTT.

2) Strain Rate: Increasing strain rate will lead to an increase in DBTT
because dislocation motion (required for ductile transition) is not given
sufficient time to occur in response to the applied load.

3) Alloy Composition: Increasing the concentration of carbon increases
the DBTT. Carbon can inhibit the dislocation motion required for
ductile deformation.

4) Geometry: Plane stress vs. Plane strain. Thicker plates (plane strain)
have a higher DBTT. For thin plates (plane stress) the deformation
zone size is roughly equal to the thickness. Fracture can occur by
ductile tearing, etc.

5) Work Hardening

5b.  Chalk is an ionic solid with no significant dislocation mobility. Therefore, it is
very brittle and the principal crack-driving stresses are those that are normal to the
crack face (i.e. those which are oriented 45° to the axis of the specimen)
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In contrast, Plasticene is a polymer capable of significant plastic deformation.
Failure is ductile and occurs via shear. Shear stresses are maximum normal to the

axis of the specimen
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5c.

Tempering of glass is a thermomechanical processing step that induces a residual
compressive stress in the surface of the glass. The residual compressive stress
suppresses the growth of cracks on the surface of the glass. When glass is loaded
in tension, failure almost always initiates from surface flaws. For the case of
tempered glass, before the applied tensile stress can exert any tensile load on the
cracks, it must first overcome the residual compressive stress that exists due to the
tempering process, and thus tempered glass is more resistant to tensile fracture
than ordinary glass, and can sustain larger tensile loads.

The process of tempering occurs by cooling the glass surface (using jets of cool
air or water) while it is still hot and able to flow. The cooling causes the outer
surface to contract, while the inner core is still hot and flows along with the
contracting outer surfaces. When the core finally cools, it contracts and puts the
outer surface into residual compression, while the core is put into residual tension.
Tempering of glass is somewhat analogous to shot-peening of metals as it
represents a processing step which induces a beneficial compressive residual
stress in the surface layer. Tempered glass has been used for many applications
(e.g. automobile windshields).



Problem 6.

The Tresca criterion states that yield occurs when the maximum shear
stress reaches a critical value, i.e.

1 _ Oys
Tmax = *2“ lUmax = 0min| — 7

So the only trick in the problem is to find out what are the maximum
and minimum stresses. Looking at the form of the principal stresses
(see page 7 in the notes on plastic zone size), it can be seen that for
6 between -180 and 180 degrees, o1 is always omax. What about opmin?
For the plane stress case, o3 = 0, (and o, is never negative) and thus
03 = Omin SO that

1 1
= |Omax — Omin| = 5 loy — 0] =

2

8 g
cos— |14+ sin— :@
Ty 2 2

solve for r,

2
T—i = cong (1+sin Q)

s 2

where 7 = K7/(2mo%g) is the approximate plastic zone size (see page
2 on the notes on the plastic zone size). For the plane strain case, we
need to decide which stress (o2 or o3) is the minimum stress. First
evaluate the stresses oy and o5 at € = 0°. We find that

. s Bl
omr’ = VQ'M‘

For a reasonable value of v (say v = 1/3) we see that o3 < o3 so
03 = Omin. But note that at some critical angle 8., o3 is equal to o3,



and beyond that angle oy is now Opin. So the minimum stress oy is
either o9 or o3, depending on the angle. We can find the critical angle
by setting o3 = 09:

2nr 2 2mr 2
/)
(1 — sin Ec) =2

6. = 2sin™" (1 — 2v)

KI Hc . Gc KI Gc
——cosa l1—sin— ) =—2vcos —

or

Solve for 6,:

For 0 < 0,, 03 = Omia and the plastic zone radius is given by:

9 2
1p—p=cos{“’g 1+4sin— —2v
7'; 2 2

and for 8 > 0., 0o = o and the plastic zone radius is given by:

) V)
™» — 4 cos® — sin? =
'r; 2 2

In the problem we are also asked to consider the ratio of the plastic
zone radius for plane strain and plane stress for § = 0° and 6 = 45°.
For the calculation, I assumed that v was equal to 1/3 and thus 6, = .
The plastic zone radii are evaluated below:

Tp

£=1 (Plane Stress, § = 0°)

Tp

Z?i = 1.63 (Plane Stress, § = 45°)

"p
T 1 . &
-£ = - =(.111 (Plane Strain, § = 0°)
v 9



T_i’ = 0.5 (Plane Strain, § = 45°)

Tp

and thus the ratios are given as:

rp (Plane Strain) 1 o
= — =] 111 (8 =0
rp (Plane Stress) 9 0 ( )

rp (Plane Strain) 0.5
r, (Plane Stress)  1.63

= 0.307 (0 = 45°)



