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3.320: Lecture 13 (Mar 17 2005) 

MOLECULAR DYNAMICSMOLECULAR DYNAMICS
(PLAY IT AGAIN SAM)(PLAY IT AGAIN SAM)
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A Particle Is a Particle Is a Particle
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N coupled equations
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• The force depends on positions only (not 
velocities)

• The total energy of the system is conserved 
(microcanonical evolution)
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Conservation of the total energy
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Operational Definition

• We follow the evolution of a system composed of 
many classical particles

• Each particle interacts simultaneously with every 
other particle (usually – but can also have ‘hard 
spheres’ contact interaction), and can experience 
an additional external potential

• It’s a many-body problem – albeit with a simpler 
informational content than in the case of the 
electrons (why ?)
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Some history

• MANIAC operational at Los Alamos in 1952
• Metropolis, Rosenbluth, Rosenbluth, Teller, and 

Teller (1953): Metropolis Monte Carlo method
• Alder and Wainwright (Livermore 1956): 

dynamics of hard spheres
• Vineyard (Brookhaven 1959-60): radiation 

damage in copper
• Rahman (Argonne 1964): liquid argon
• Car and Parrinello (Sissa 1985): ab-initio MD
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Phase Space

• If we have N particles, we need to specify 
positions and velocities for all of them (6N
variables) to uniquely identify the dynamical 
system

• One point in a 6N dimensional space (the 
phase space) represents our dynamical system
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Phase Space Evolution
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Three Main Goals

• Ensemble averages (thermodynamics)
• Real-time evolution (chemistry)
• Ground-state of complex structures 

(optimization)
• Structure of low-symmetry systems: liquids, amorphous 

solids, defects, surfaces
• Ab-initio: bond-breaking and charge transfer; structure of 

complex, non trivial systems (e.g. biomolecules)
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Limitations

• Time scales
• Length scales (PBC help a lot)
• Accuracy of forces 
• Classical nuclei
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Thermodynamical averages
• Under hypothesis of ergodicity, we can 

assume that the temporal average along a 
trajectory is equal to the ensemble-average 
over the phase space
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Are you ergodic ?
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Thermodynamical averages

• Let’s start with the simple case: straightforward 
integration of the equations of motion (i.e. 
microcanonical: N, V and E are constant)

• The trajectory in the phase space spans states 
belonging to the microcanonical ensemble

• A long trajectory generates an excellent sample of 
microstates
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The Computational Experiment

• Initialize: select positions and velocities
• Integrate: compute all forces, and determine 

new positions
• Equilibrate: let the system reach equilibrium 

(i.e. lose memory of initial conditions)
• Average: accumulate quantities of interest
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Initialization

• Second order differential equations: 
boundary conditions require initial positions 
and initial velocities

• Initial positions: reasonably compatible 
with the structure to be studied. Avoid 
overlap, short distances.

• Velocities: zero, or small. Then thermalize
increasing the temperature
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Maxwell-Boltzmann distribution
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Integrate

• Use an integrator… (Verlet, leapfrog Verlet, velocity 
Verlet, Gear predictor-corrector)

• Robust, long-term conservation of the constant of 
motion, time-reversible, constant volume in phase 
space

• Choose thermodynamic ensemble (microcanonical
NVE, or canonical NVT using a thermostat, isobaric-
isothermic NPT with a barostat…)

• Stochastic (Langevin), constrained (velocity 
rescaling), extended system (Nose-Hoover) 
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Integrators
• (Simple) Verlet
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