
Remaining Issues


•	 Electron wave picture has fixed some thermal/electrical properties and 
electron velocity issues 

•	 Still can not explain: 
–	Hall coefficients 
–	Colors of metals 
–	Insulators, Semiconductors 

•	 Can not ignore the ions (i.e. everything else but the valence electrons 
that we have been dealing with so far) any longer! 

•	 Whatever we modify, can not change the electron wave picture that is 
now working well for many materials properties 

•	 HOW DO THE VALENCE ELECTRON WAVES INTERACT 
WITH THE IONS AND THEIR POTENTIALS? 
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Improvements? What are ion cores doing... 
•	 Scattering idea seems to work 
•	 any effect of crystal (periodic) lattice? 
•	 Diffraction 

–	 proves periodicity of lattice 
–	 proves electrons are waves 
–	 proves strong interaction between crystal and electrons (leads to 


band structures=semiconductors and insulators)

–	 useful characterization technique 

•	 Course: bias toward crystalline materials: many applications: materials 
related to either end of spectrum (atomic/molecular or crystalline) 

Point defects, Polymers, Bands; properties of many 
atoms, molecules α Si solids with or without extended defects 

localized extended 

Diffraction is a useful characterization in all these materials 2 
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Electrons in a Periodic Potential


•	 Rigorous path: HΨ=EΨ 

•	 We already know effect: DeBroglie and electron 
diffraction 

•	 Unit cells in crystal lattice are 10-8 cm in size 
•	 Electron waves in solid are λ=h/p~10-8 cm in size 
•	 Certain wavelengths of valence electrons will diffract! 
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Diffraction Picture of the Origin of Band Gaps 

• Start with 1-D crystal again 
λ~a 

Take lowest order, n=1, and 
consider an incident valence1-D electron moving to the righta 

π iπ x 
aki = ;ψ i = e 

d=a, a 
nλ = 2d sinθ sinθ=1 π −iπ x 

aReflected wave to left: ko = − ;ψ o = e 
a 

nλ = 2a 2π
Δk = ki − ko = 

a2πk = 
λ Total wave for electrons with diffracted wavelengths: 
πn ψ =ψ i ±ψ o

k = π a ψ s =ψ i +ψ o = 2cos x 
a 
πψ a =ψ i −ψ o = i2sin x 4 a
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Diffraction Picture of the Origin of Band Gaps

Probability Density=probability/volume of finding electron=|ψ|2


2 2 πψ = 4sin xa a 
2 2 π 
= 4cos x aψ s a 

a 
•Only two solutions for a diffracted wave 

•Electron density on atoms 
•Electron density off atoms 

•No other solutions possible at this wavelength: no free traveling wave 
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Nearly-Free Electron Model


•	 Assume electrons with wave vectors (k’s) far from diffraction 
condition are still free and look like traveling waves and see ion 
potential, U, as a weak background potential 

•	 Electrons near diffraction condition have only two possible solutions 
–	electron densities between ions, E=Efree-U 
–	electron densities on ions, E= Efree+U 

•	 Exact solution using HΨ=EΨ shows that E near diffraction conditions 
is also parabolic in k, E~k2 
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Nearly-Free Electron Model (still 1-D crystal)


states
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Eg=2U Diffraction, 
k=nπ/a 

free electron curve 

Near k=nπ/a, 
band gaps form, strong 
interaction of e- with 
U on ions 

kπ/a-π/a 0 
Δk=2π/a=G=reciprocal lattice vector 
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Consequences of Diffraction on E vs. k curves

• At k=π/a, there must be also a k=-π/a wave, since there is absolute 

diffraction at this k Standing wave at 
• True for every k=nπ/a diffraction 
• conditionCreates a parabola at every nG 

E 

k=-π/a in 
reference 
parabola 

k=π/a in 
reference 
parabola 

−2π/a -π/a 0 π/a 2π/a k

8 G −2π/a -π/a 0 
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Extended-Zone Scheme 

• Bands form, separated by band gaps 
• Note redundancy: no need for defining k outside +-π/a region 

E 

Band 2


Band gap EgBand 1


kπ/a-π/a 0 2π/a−2π/a 
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Reduced-Zone Scheme 

• Only show k=+-π/a since all solutions represented there


−π/a π/a 
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Real Band Structures 
• GaAs: Very close to what we have derived in the nearly free electron model 
• Conduction band minimum at k=0: Direct Band Gap 

11 
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•	 Ge: Very close to GaAs, 
except conduction band 
minimum is in <111> 
direction, not at k=0 

•	 Indirect Band Gap 
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Trends in III-V and II-VI Compounds
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