
Wave-particle Duality: Electrons are not just particles


• Compton, Planck, Einstein 
– light (xrays) can be ‘particle-like’ 

• DeBroglie 
– matter can act like it has a ‘wave-nature’ 

• Schrodinger, Born 
– Unification of wave-particle duality, Schrodinger 

Equation 
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Light has momentum: Compton 
• No way for xray to change λ after interacting classically 
• Experimentally: Compton Shift in λ 

• Photons are ‘particle-like’: transfer momentum 
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Light is Quantized: Planck

• Blackbody radiation: energy density at a given ν (or λ) should be predictable 
• Missing higher frequencies! (ultra-violet catastrophe) 

hollow cube, 
metal walls 

L 
L 

ρ(ν)dν=energy per volume being emitted in ν+dν 

ρ( )d N ( )  ⋅ Ewaveν dν
ν ν = 

volume 

N(ν) is the number density, i.e. number of waves in ν+dν (#/frequency)
Heat to T 

Finding N(ν): Inside box, metal walls are perfect reflectors for the E-M waves 

Ei = Eoie
i(ωt−kz) ; Er = Eor e

i(ωt+kz) Perfect reflection, Eoi=-Eor 

iωt −ikz ikz iωtEtot = Eoie [e − e ]= −2iEoie sin kz 
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Light is Quantized: Planck

Real{E }= 2E sinωt sin kz Standing Wavestot oi 

E-field inside metal wall 
is zero (due to high 0 L 

conductivity) 

Therefore, sinkz must equal zero at z=0 and z=L 

sin kL = 0; kL = πn; k = π 
L
n Also, since k=2π/λ, n = 

2 
λ 
L or λ = 

2 
n
L 

Note that the wavelength for E-M 
2L waves is ‘quantized’ classically just by In 3-D, λ = 

nx 
2 + n2 

y + nz 
2	

applying a confining boundary 
condition 

c nx 
2 + ny 

2 + nz 
2 c n r 

ν = = n r = nxî  + ny ĵ + nz k̂ 
2L 2L 
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Light is Quantized: Planck

nz ν (nx,ny,nz) 1 state (i.e. 1 wavelength or frequency) in 

(c/2L)3 volume in ‘n-space’ 
ny 

2 possible wave polarizations for each state 

c/2L nx (Note also that postive octant is only active one 
since n is positive: shows as 1/8 factor below) 

Using the assumption that ν >>c/2L, 

1 4πν 3 

8 3 8L3ν 3πN = = 
1 ⎛ c ⎞ 

3 3c3 

⎜ ⎟
2 ⎝ 2L ⎠ 

N ( ) = 
dN 8L3ν 2πν = 
dν c3 
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Light is Quantized: Planck 

Now that N(ν ), the number of E-M waves expected in ν +dν , has been 
determined simply by boundary conditions, the energy of a wave must be 
determined for deriving ρ (ν ) 

8πν 2 L3


N ( )  E 8πν kT
( ) = 
ν wave c3 kT 

= 
2 

ρ ν = 
volume L3 c3 

The classical assumption was used, i.e. Ewave=kbT 
This results in a ρ (ν ) that goes as ν 2 

At higher frequencies, blackbody radiation deviates substantially from this dependence
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•Low ν OK: E=kbT 
•At high ν, E goes to zero 
(i.e. no waves up there!) 

Figure by MIT OpenCourseWare.



Light is Quantized: Planck 
•Classical E=kbT comes from assumption that Boltzmann distribution determines 
number of waves at a particular E for a given T 
•Since N(ν) can not the problem with ρ(ν), it must be E 
•E must be a function of ν in order to have the experimental data work out 

Origin of E=kbT 
E

− 

Boltzmann distribution is P ' ( )E = Ae kbT 

P E	 A =Normalized distribution is ( ) =
∞

∫ P ' ( )E dE = 1; 1 
k T0	 b 

Average energy of particles/waves with this distribution: 
∞ 

∫	 ( )  ∞EP E dE 
= ∞ 

= if P(E) is normalized = ∫ ( ) = kbTE	 0 EP E dE 

∫ P(E)dE 0 

0 
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Light is Quantized: Planck 
•If P(E) were to decrease at higher E, than ρ (ν ) would not have ν 2 dependence at higher ν 
•P(E) will decrease at higher E if E is a function of ν 
•Experimental fit to data suggests that E is a linear function in ν , therefore E=nhν where h 
is some constant 

∞ − 
nhν 

∑ 
nhν e kbT Note: the integrals need to be 

0 k T hν removed in the average and
E = b 

nhν = hν replaced with sums since the
∞ 1 e 

− 
k T e k T − 1 spacing of energies becomesb b∑ 

0 kbT greater as E increases 

ρ ν 
8πν 2 hν h determined by an experimental fit and( ) = 

c3 hν equals 
e kbT − 1 

At small hν /kbT, ehν /kT~1+hν /kbT and ρ (ν )~kbT 
At large hν /kbT, ~hν e-hν /kT which goes to 0 at high E 
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Light is Quantized: Planck


• Lessons from Planck Blackbody 
– waves which are confined with boundary conditions 

have only certain λ available: quantized 
– E=nhν, and therefore E-M waves must come in chunks 

of energy: photon E=hν. Energy is therefore quantized 
as well 

– Quantized energy can affect properties in non-classical 

situations; classical effects still hold in other situations
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Light is always quantized: Photoelectric 

effect (Einstein)


•	 Planck (and others) really doubted fit, and didn’t initially believe h was 
a universal constant 

• Photoelectric effect shows that E=hν even outside the box 
I,E,λ 

metal Maximum 
block	 electron Emax=h(ν-νc) 

energy, 
Emax 

!e-

cν	 ν 

For light with ν<νc, no matter what the intensity, no e
-
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Light is always quantized: Photoelectric 

effect (Einstein)


E 

EF 

ΔE 

Ein=hν 
vacuum 

Evac=Ein-ΔE 

Emax=Ein-ΔE=hν-hνc 

x Ein=hν! 

Strange consequence of Compton plus E=hν: light has momentum but no mass 

λ = 
hc 

= 
h since E = cp for a photon

E p 
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DeBroglie: Matter is Wave

• His PhD thesis! 
• λ=h/p also for matter 
• To verify, need very light matter (p small) so λ is large enough 
• Need small periodic structure on scale of λ to see if wave is there (diffraction) 
• Solution:electron diffraction from a crystal 

Nλ=2dsinθ


For small θ, θ~λ/d, so λ must be on order of 
d in order to measure easily 
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Diffraction


•	 Incoming λ must be on the order of the lattice constant a or so (λ<~ 
few tenths of a nanometers) 

•	 x-rays will work (later, show electrons are waves also and they can be 
used for diffraction also) 

•	 x-rays generated by core e- transitions in atoms 
– distinct energies: E=hc/λ; E~ 10keV or so (core e- binding 

14 

energies) 

λCu 

θ 
θ 

‘single-crystal’ 
diffraction 

nλ=2dsinθCooled Cu 
target 

e-

Thermionic 
emission 

sample 

detector 

Collimator crystal (decreases spread in θ and λ) 

sample 

detector 

‘double crystal’, 
‘double axis’ diffraction 

Add a channel crystal (also 
called analyzer crystal) after the 
sample and it is called triple axis 
diffraction 

©1999 E.A. Fitzgerald 



Example of Diffraction from Thin Film of 

Different Lattice Constant


•	 InGaAs on GaAs deposited by molecular beam epitaxy (MBE) 
•	 Can determine lattice constant (In concentration) and film thickness 

from interference fringes 

©1999 E.A. Fitzgerald 

In0.05Ga0.95As 

GaAs 

Interference fringes 
from optical effectX-ray 

intensity 

InxGa1-xAs 

GaAs 

15 



Example: Heavily B-diffused Si 
• B diffusion from borosilicate glass 
• creates p++ Si used in micromachining 
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• gradients created in B concentration and misfit dislocations 
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DeBroglie: Matter is Wave

Proof electron was wave by transmission and beackscattered experiments, almost simultaneously 

Diffraction Transmission 
Spots 

Backscattered 

film 
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DeBroglie: Matter is Wave 
Modern TEM Modern SEM
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Image removed due to copyright restrictions.
Please see any schematic of a scanning electron microscope, such as
http://commons.wikimedia.org/wiki/Image:MicroscopesOverview.jpg

Courtesy of Uwe Falke.
Image from Wikimedia Commons, http://commons.wikimedia.org

http://commons.wikimedia.org/wiki/Image:MicroscopesOverview.jpg
http://commons.wikimedia.org


Imaging Defects in TEM utilizing Diffraction

•	 The change in θ of the planes around a defect changes the Bragg condition 
•	 Aperture after sample can be used to filter out beams deflected by defect 


planes: defect contrast
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Image removed due to copyright restrictions.
Please see any explanation of detecting dislocations via TEM, such as

http://www.uni-saarland.de/fak8/wwm/research/dip_welsch/ecci-defect-scheme_e.png

http://www.uni-saarland.de/fak8/wwm/research/dip_welsch/ecci-defect-scheme_e.png


Imaging Defects and Man-made Epitaxial Structures in 

TEM utilizing Diffraction


Si0. 5Ge0. 5/Ge superlattice 
(each layer ~100A) 

Si0.25Ge0.75 

Si1-xGex Layers 
(each layer about 3000A) 
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