
Magnetic Materials 
• The inductor 

ΦB = LI (Q = CV) 

1 ∂B 
∂ΦB = L 

∂I 
∇× E = − (CGS) ∂t ∂t 

∇× EdS

c 

=

∂t 

−
1 ∂ ( BdS )= −

1 ∂Φ VEMF = −
∂N 

∂
Φ 

t
B = −L 

∂
∂ 

I
t∫ ∫  c ∂t ∫ ∫  c ∂t

B 

∂I ∂V

ΦB ≡ magnetic flux density V = L (recall I = C for the capacitor)


∂t ∂t 
∫ ∫∇× EdS =∫ E ⋅dl (Green's Theorem) ∂I
Power = VI = LI

V = ∫ E ⋅dl = −

1 ∂ΦB (explicit Faraday's Law) ∂t 
c ∂t Energy = ∫ Power ⋅dt = ∫ LIdI = 

1LI 2 = 
1 NΦBI 

2 2 
⎛ 1 2 ⎞⎜capacitor CV ⎟ 
⎝ 2 ⎠ 
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The Inductor

4π 1 ∂ E

∇× B = J + 
c c ∂ t 

4π 4π
∫ ∫∇× BdS = ∫ B ⋅ dl = ∫ ∫  J ⋅ dS = I 

c c 
4πB = In 
c 

N = n ⋅ length = nl 
Nφ B N (BA) 4π 2L = = = n lA

I I c 

Insert magnetic material

Magnetic dipoles in material can line-up in magnetic field 

B = H + 4πχ H = H + 4π M 
B magnetic induction 

∂ M χ magnetic susceptibility
M = χH = χ μ = 1+ 4πχ H magnetic field strength (applied field)

∂ H M magnetization 
B = 4πM + 1 B = μH 2 
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H and B

•	 H has the possibility of switching directions when leaving the material; 

B is always continuous 

3 
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Maxwell and Magnetic Materials


•	 Ampere’s law ∫ H ⋅ dl = I = 0 
•	 For a permanent magnet, there is no real current 

flow; if we use B, there is a need for a fictitious 
current (magnetization current) 

•	 Magnetic material inserted inside inductor 
increases inductance 

Φ B = BA ~ 4πMA = 4πχHA = 4πχ⎛
⎜ 

4π In⎞
⎟ A 

⎝ c ⎠ 

NΦ B ( )  2	 Material Type χ4π 2L = = n lAχ
I c Paramagnetic +10-5-10-4 

L increased by ~χ due to 
magnetic material Diamagnetic -10-8-10-5 

Ferromagnetic +105 
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Microscopic Source of Magnetization 
• No monopoles 
• magnetic dipole comes from moving or spinning electrons 

Orbital Angular Momentum


A 

μ μ is the magnetic dipole moment 
r r 

Energy = E = −μ ⋅ H = − μ H cosθ 
I 

e-
L 

What is μ? For θ=0, E = −μH ≈ −ΦBI since energy ~ LI 2 and for 1loop L = ΦB 

I 
ΦB = ∫ ∫ H ⋅dS ~ HA 

∴μH = ΦBI = HAI and ∴μ = IA 

I = −
e ω A = πr 2 

c 2π 

μ = − 
e ωr 2 

2c 5 
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Microscopic Source of Magnetization

• Classical mechanics gives orbital angular momentum as: 

L 
r 

= r 
r 

× p 
r 

= mr 2ω


μL = − 
e LQM = − 

eh LZ = −μBLZ Example for l=1:
2mc 2mc 
+μBH 

⎛ eh ⎞
⎜ μB = ⎟ 0
⎝ 2mc ⎠ E(H=0)


LZ = ml = −l,...,0,...l -μBH


Spin Moment μs 

+(1/2)μBg0H 
e Q.M . eh
μs = − S = − g0 Sz = −g0μBSZ
mc 2mc E(H=0)


SZ = mS = ± 
1 g0 = 2 for electron spin -(1/2)μBg0H 
2 
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Total Energy Change for Bound Electron in 

Magnetic Field


• Simple addition of energies if spin-orbital coupling did not exist 
r r 

E = −μ ⋅ H = μB (LZ + g0 SZ )H = μT H 

But spin-orbit coupling changes things such that: 

μT ≠ μB (LZ + g0 SZ ) = μB JZ 

QM definitions: μT = gμB JZ 

L = hLZ = hml 3 1 ⎡ S(S +1)− L(L +1)⎤


S = hSZ = hms 

g = 
2 

+ 
2 ⎢⎣ J (J +1) ⎥

⎦

r r r r

J = L + S E = −μT ⋅ H = gμB J ⋅ H = gμB JZ H 

J = hJZ 
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Total Energy Change for Bound Electron in 

Magnetic Field


• Kinetic energy from Lorentz force has not been included 
r 

Lorentz for circular orbit 

Energy change = 
p2 

= 
e2

2 (r 
r 

× H 
r )⋅ (r 

r 
× H 
r )

2m 8mc


For the plane perpendicular to H and assuming circular orbit:

e 2 2 e 2 2 2Energy change = 

8mc 

2

2 r H = 
8mc 

2

2 (x + y )H 

Hr 
c 

e pH 

r 
×−= 

2 

∴ΔETOT = gμBHJZ + 
e2

2 H 2 (x2 + y2 )
8mc 

Numbers: μBH for  for 
H=10-4 Gauss H=10-4 Gauss 
=10-4 eV =10-9 eV 

The Lorentz effect is minimal with respect to magnetic moment interaction, if it exists
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Atoms with Filled Shells

•	 J=0 (L=0, S=0) 2 

•	 Only Lorentz contribution ΔE = 
e 

2 H 2 (x2 + y2 )
8mc 

•	 Leads to diamagnetism 

Need to sum over all e- in atom: 

2 

ΔEatom = 
12 

e
mc2 H 2 

3
2 ∑ 

i 
ri 

2 (for a spherical shells) 

N ∂2 Eχ = -
V ∂H 2 

⎛ 1 ∂E ∂M ⎞
⎜ M	 = − χ = ⎟ 
⎝ V ∂H ∂H ⎠ 

2χ = − 
e2

2 

N ∑ ri 
2 = − 

e2

2 

N r Zi6	mc V i 6mc V 

e2 N 2χ = − r Zi ~ -10-5 
6mc2 V 
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Atoms with Partially Filled Shells


• J not zero 
• Need Hund’s rules from QM 

– Fill levels with same ms to maximize spin 
– maximize L (first e- goes in largest l) 
– J=|L-S| for n<=(2l+1), J=|L+S| for n>(2l+1) 

• Conventional notation: (2S +1) X J 

L 0 1 2 3 4 5 6 

X S P D F G H I 

• J=0 when L and S are not zero is a special case 
– 2nd order effect--> perturbation theory 

• Partially filled shells give atoms paramagnetic behavior 

ΔE = gμBHJZ 

(+10-2-10-3>10-9 eV for diamagnetic component) 
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d-shell (l = 2)

f-shell (l = 2)

n

n

1
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3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10
11
12
13
14

lx = 2, 1, 0, -1, -2,

-1, -2, -2,lz = 3, 2, 1, 0,

S L = |Σlx| J

J=|L-S|

J=L+S

Symbol

S L = |Σlz| J
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1
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2
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2
3/2
1
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3
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0
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2
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4
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Ti
V
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Mn
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Cu
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Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb

J=|L-S|

J=L+S

1/2 3
1
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2
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3H4

5I4
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Temperature Dependence of Paramagnetism

•	 Temperature dependence determined by thermal energy vs. magnetic 

alignment energy (same derivation as for molecular polarizability in the case 
of electric dipoles) 

U− pE cosθ U− Hμ θcos 

f = k Tbe = e k Tb for electric dipoles; f = k Tbe = e k Tb for magnetic dipoles; 

Zμ = 
∫ 

∫ 
Ω 

Ω 

fd 

Z fdμ 
For low H fields and/or low T, 

Zμ = 
k T 

H 

b3 

2μ 
= 

k T 

J H 

b 

B 

3 

22μ 

M = 
V 

N 

k T 

J H 

b 

B 

3 

22μ 

=χ 
V 

N 

k T 

J 

b 

B 

3 

22μ 

QMχ = 
3 
1 

V 

N 

k T 

g J J 

b 

B (22μ 1)+ 
∝χ 

T 

1 
Curie’s Law 
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Effect of De-localized electrons on Magnetic 

Properties


• Pauli Paramagnetism 
– dues to the reaction of free e- to magnetic field 

ΔE = g0 μBH μ = −g0μBS
E(H=0) 

M = −μB (n+ − n− ) (n+ is the density of free electrons parallel to the H field) 

g+ ( ) = 
1 g(E + μBH )E For exact solution, needE g Eg+ ( ) = 

1
2 

( )  
ΔE = g0μBH 

2 to expand about Ef for n+ 
g− ( )E 

1 ( ) E(H=0)
= g E g− ( ) = 

1 g(E − μB 
and n-E H )

2 2 

Only e- near Fermi surface matter: 
ΔE = g0 μBH 

n ( )  ( + − n− ) = Δn ≈ g EF 

Δ 

2 
E 

Note: Pauli paramagnetism has no T 

Δn ≈ g( )  E μ H 
dependence, whereas Curie paramagnetism has 

F B 1/T dependence 13
M = μ ( )  χ = μ ( )©1999 E.A. Fitzgerald B 

2 Hg EF , B 
2 g EF 



Effect of De-localized electrons on Magnetic 

Properties


• Landau paramagnetism 
– Effect of bands/Fermi surface on Pauli paramagnetism 
– F=qvxB for orbits 
– orbit not completed under normal circumstances 
– however, average effect is not zero 

χ Land = − 
1 χPauli3 
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Ferromagnetism 
•	 Most important but not common among elements 
•	 Net magnetization exists without an applied magnetic field 
•	 To get χ~104-105 as we see in ferromagnetism, most moments in 


material must be aligned!

•	 There must be a missing driving force 

1	 r r r r −4NOT dipole-dipole interaction: too small Edipole = 3 [μ1 ⋅ μ2 − 3(μ1 ⋅ r̂)(  μ2 ⋅ r̂)] ~ 10 eV 
r 

Spin Hamiltonian and Exchange


H spin = −∑ JijSiS j Jij ≡ exchange constant 

Assuming spin is dominating magnetization,


H = − 
1 ∑ S 

r(R 
r)⋅ S 

r(R 
r 
')J (R 

r 
− R 
r 
')− gμBH ∑ S (R 

r)
r r	 r2 R,R '	 R 
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Exchange 

E~-JS1S2 

J negative, E~+S1S2--> Energy if 

J positive, E~-S1S2--> Energy if 

Fe, Ni, Co ---> J positive! 
Other elements J is negative 

Rule of Thumb: 
r interatomic distance

≡ > 1.5 
2ra 2(atomic radius) 

J is a function of distance! 
©1999 E.A. Fitzgerald 
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Ferromagnetism 

M ( )  (  T ∝ TC −T )β β ≈ 0.33- 0.37M 
χ( )  (  T ∝ TC −T )−γ γ ≈1.3-1.4 

H 

B=H+4πM 

‘normal’ paramagnet 

Br, Ms 

Hc 

Irreversible boundary displacement 

Domain rotation 

reversible boundary displacement 

TC T


Easy induction, “softer” 

Magentic anisotropy 
hardness of loop dependent on crystal direction 
comes from spin interacting with bonding 

17 
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Domains in Ferromagnetic Materials


B 

M 

N 

S 

S N S N 

N S N S 

Magnetic domain Domain wall or boundary Flux closure 

Magnetic energy 
No external field 

= 
1 
∫ B2dV 

8 
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