Dielectric and Optical Properties

* As with conductivity, we will start with macroscopic property and
connect to the microscopic

» All aspects of free electrons have been covered: only bound electrons left
« Capacitance, Optical properties --> g,n --> molecules and atoms

Review of capacitance and connection to dielectric constant

First, no material in capacitor

/\‘to RV, Q=CV
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The Capacitor
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Charge C?C}C}

The Capacitor

e The air-gap can store energy!
* If we can move charge temporarily without current flow, can store even more
* Bound charge around ion cores in a material can lead to dielectric properties

A/
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Polarized molecules

*Two kinds of charge can create plate
charge:

surface charge

«dipole polarization in the volume
*Gauss’ law can not tell the difference
(only depends on charge per unit area)

Image from Wikimedia Commons, http://commons.wikimedia.org
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Material Polarization
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E'=P
D=¢gE+P=¢E P is the Polarization
D is the Electric flux density or the Dielectric
& =&, &, displacement
P v 1S the dielectric or electric susceptibility
& =1l+——=1+y

& E

All detail of material response is in ¢, and therefore P 4




Origin of Polarization

o We are interested in the true dipoles creating polarization in materials (not
surface effect)

» As with the free electrons, what is the response of these various dipole
mechanisms to various E-field frequencies?
* When do we have to worry about controlling
— molecular polarization (molecule may have non-uniform electron density)
— 1onic polarization (E-field may distort ion positions and temporarily create dipoles)

— electronic polarization (bound electrons around ion cores could distort and lead to
polarization)

o Except for the electronic polarization, we might expect the other mechanisms
to operate at lower frequencies, since the units are much more massive

* What are the applications that use waves in materials for frequencies below the
visible?
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Application for different E-M Frequencies

The EIECtromagnetiC SpeCtrum I keTe -The thermal energy at room temperature
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Courtesy of the Opensource Handbook of Nanoscience and Nanotechnol ogy,
http://en.wikibooks.org/wiki/Nanotechnol ogy

In communications, many E-M waves travel in insulating materials:
What is the response of the material (g,) to these waves?

©1999 E.A. Fitzgerald


http://en.wikibooks.org/wiki/Nanotechnology

Wave Eqn. With Insulating Material and

Polarization
vxE -8
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Compare Optical (index of refraction)
and Electrical Measurements of ¢

Material  Optical, n° Electrical, ¢

diamond  5.66 5.68 Only electrical polariztion
NaCl 2.25 59 Electrical and ionic polariztion
HZO 1.77 80.4 Electrical, ionic, and

molecular polariztion

Polarization that is active depends on material and frequency
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Microscopic Frequency Response of
Materials

* Bound charge can create dipole through charge displacement

« Hydrodynamic equation (Newtonian representation) will now have a
restoring force

* Review of dipole physics:

—

'q@d_,@+q

Dipole moment: P = qd

p

Applied E-field rotates dipole to align with field:
Torque 7 = PXE

Potential Energy U =—-p- E = ‘ ﬁHE‘COSH
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Microscopic Frequency Response of
Materials

» For a material with many dipoles:
P =Np=Nc¢E (p=cE)

(polarization=(#/vol)*dipole polarization)
a=polarizability

ﬁ =akE Actually works well only for low density of dipoles, i.e. gases: little screening

For solids where there can be a high density: local field

For a spherical volume inside (theory of local field),
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Microscopic Frequency Response of
Materials

* We now need to derive a new relationship between the dielectric constant and
the polarizability

D=¢ccE =¢E_+P

r~o —ext 0 —ext

P=¢cecE. . —¢E

r“o—ext 0 —ext
2+ ¢,
EIoc = Eext( 3 j

Plugging into P=NaE,,...

loc*

cecE. . —¢E :Na(8r+2)E

r“o —ext 0 —ext 3 ext

(5 —1)50 :%(gr +2)

&-1 Na «
&+2 3g, 3ve
Macro Micro 11

Clausius-Mosotti Relation: Where v is the volume per dipole (1/N)
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Different Types of Polarizability

Highest natural frequency Lightest mass

e Atomic or electronic,o,
« Displacement or ionic, o,
 Orientational or dipolar, o,

Lowest natural frequency Heaviest mass

a=a,+a;+a,
As with free e-, we want to look at the time dependence of the E-field: E = Eoe““’t
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Classical Model for Electronic Polarizability
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Electronic Polarizability

I, = ezEO 1 Dge = K If no Clausius-Mosoitti,
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QM Electronic Polarizability

o At the atomic electron level, QM expected: electron waves
* QM gives same answer qualitatively
* QM exact answer very difficult: many-bodied problem

El ez flO E1 B Eo

%(0)= m o/, — w° ; o

E0
f,, Is the oscillator strength of the transition (y, couples to vy, by E-field)

For an atom with multiple electrons in multiple levels:
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lonic Polarizability

* Problem reduces to one similar to the electronic polarizability
» Critical frequency will be less than electronic since ions are more massive
» The restoring force between ion positions is the interatomic potential

E(R)
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Electron bonding in between ions
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lonic Polarizability

| —

U- u+
lonic materials always have ionic and
electronic polarization, so:

., =o +a, =a, +a_+ e’
tot — “Fi - —
() i e + M (a)gi _0)2)
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2 coupled differential eqn’s
*1 for + ions
*1 for - ions

wW=u, -u_, W=U, —-U_

1
M = 1 1
+7
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lonic Polarizability

« Usually Clausius-Mosotti necessary due to high density of dipoles
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Orientational Polarizability

* No restoring force: analogous to conductivity

s H C +(
o— e
\‘ H
L <
For a group of many molecules at some temperature:
-U pE cos@
o f:eka:e kpT
Analogous to conductivity, the
molecules collide after a certain After averaging over the polarization of the
time t, giving: Wecmes (valid for low E-fields):
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