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Lecture 7: Solutions to the Diffusion Equation—I.
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Key Concepts

When the diffusivity D is concentration-dependent, the diffusion equation is nonlinear and closed-
form solutions to practical problems don’t exist. The “Boltzmann—-Matano” method is a graphical one
for using a measured c(x) profile from a diffusion-couple experiment to determine D(c), using the

relation D(c;) = — 5 (fl—ﬁ) [ # x(c) dc after setting the position 2 = 0 such that fcc,f xde=0.
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Examination of asymmetry in an interdiffusion profile ¢(z) gives useful information about trends in
the concentration dependence of D(c): D will be larger on the side with the shallower ¢(x) profile,
and D will be smaller on the side with the steeper ¢(x) profile (see KoM Exercise 4.2).

When D is time dependent (e.g., when temperature changes occur during a diffusional process), a
simple approach using a time-weighted diffusivity defined by 7p = fot D(t") dt" allows Fick’s second
law to be transformed into the alternate linear form 597‘; = V2c. Familiar solution methods to solving
the diffusion equation such as error functions and point sources can be readily adapted to cases where
D is time dependent.

In crystals and other anisotropic materials, D is generally anisotropic. Because D relates two vectors,
D is a second-rank tensor quantity. Note however that symmetry considerations dictate that for cubic
crystals, D is isotropic.

The mathematical description of anisotropic diffusion depends on the choice of coordinate axes. Fre-
guently, the most convenient choice is parallel to high-symmetry crystal axes.

When anisotropic diffusion is described in special coordinate axes termed principal axes, the diffu-
sivity tensor is diagonal, and diffusive fluxes along each principal axes are effectively uncoupled.

Given a diffusivity tensor, finding its eigensystem (eigenvalues and eigenvectors) determines its prin-
cipal axes and the prinicipal values of the diffusivity tensor along the diagonal in the principal axis
coordinates.

Crystal symmetry dictates the form of the diffusivity tensor in the crystal axis system, i.e., where the
non-zero terms will be, and which non-zero terms must be equal.

A scaling transformation, KoM Eq. 4.64, permits solutions for isotropic D to be readily adapted to
cases in which D is anisotropic (see KoM Exercise 5.9).

Related Exercises in Kinetics of Materials
Review Exercises 4.1-4.8, pp. 91-97.



