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Key Concepts 

•	 If an initially planar isotropic surface of a material is roughened with parallel grooves, its surface 
area and hence total surface free energy will increase. The roughened surface experiences a capillary 
driving force (i.e., a diffusion potential) equal to γ(K1 + K2) ≡ γκ such that curved regions of the 
surface tend to move toward their center of curvature. The equations governing the smoothing kinetics 
depend on the transport mechanism that is active. 

•	 When transport occurs by surface diffusion, the surface flux is proportional to the gradient of curvature 
along the surface (approximately the third derivative of the surface height profile h(x, t) with respect 
to x). The rate of change of height is equal to the divergence of the flux, and thus to the fourth 
derivative of h(x, t) with respect to x. The resulting evolution equation (see KoM Eq. 14.10) can 
be solved using separation of variables. For sinusoidal groove shapes the amplitude of the grooves 
decays as exp[−t/λ4] (see KoM Eq. 14.13). 

•	 When surfaces evolve by transport through the vapor, the surface moves by a process of evaporation 
and/or condensation. The normal velocity of the surface is proportional to the vapor flux, and matter in 
the solid is not conserved. The flux in the vapor is proportional to the difference between the ambient 
pressure and the vapor pressure in local equilibrium with a surface element with curvature κ (see KoM 
Eq. 14.14). In this case the local velocity of the interface is proportional to local curvature and when 
the surface is gently curved (i.e., small slope approximation) the resulting evolution equation has the 
form of Fick’s second law (KoM Eq. 14.20). KoM pp. 342–343 shows how the resulting equation 
can be applied to grain boundary grooving at the junction of a grain boundary with a the surface of a 
polycrystal (see KoM Fig. 14.9 for a great micrograph!). 

•	 The morphological stability of a cylindrical body with respect to breakup into a row of droplets is 
a famous problem solved by Lord Rayleigh in 1878. This is often called the Rayleigh instability. 
It is not difficult to write the equation for the surface area of a cylinder that has a sinusoidal axial 

2πz perturbation of its radius with the form R(z, t) = Rcyl(t)+ ǫ(t) cos 
λ 

. The resulting analysis shows 
that there is a critical wavelength equal to 2πRcyl below which the area of the cylinder is increased, 
and above which it is decreased. The cylinder is stable with respect to short-wavelength perturbations, 
and unstable with respect to long-wavelength perturbations. 

•	 KoM Sections 14.1.3 and 14.1.4 develop expressions for the time evolution of the amplitude of sinu­
soidal perturbations of a cylinder for the vapor transport and surface diffusion mechanisms, respec­
tively. The results of the surface diffusion case are particularly interesting in that there is a kinetic 
wavelength at which the breakup of an unstable cylinder will occur the fastest (see KoM Fig. 14.5). 

Related Exercises in Kinetics of Materials 

Review Exercises 14.1–14.3, pp. 354–359. 


