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Solutions to the 
Diffusion Equation 

1




Solutions to Fick’s Laws 

 Fick’s second law, isotropic one-dimensional

diffusion, D independent of concentration
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Linear PDE; solution requires one initial

condition and two boundary conditions.
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Figure removed due to copyright restrictions.
See Figure 4.1 in Balluffi, Robert W., Samuel M. Allen, and W. Craig Carter.
Kinetics of Materials. Hoboken, NJ: J. Wiley & Sons, 2005. ISBN: 0471246891.



Steady-State Diffusion 

 When the concentration field is independent of 
time and D is independent of c, Fick’

! 

"
2
c = 0

s second 
law is reduced to Laplace’s equation, 

For simple geometries, such as permeation 
through a thin membrane, Laplace’s equation can 
be solved by integration. 
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 Examples of steady-state profiles


(a) Diffusion through a flat plate 

(b) Diffusion through a cylindrical shell
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Figure removed due to copyright restrictions.
See Figure 5.1 in Balluffi, Robert W., Samuel M. Allen, and W. Craig Carter.
Kinetics of Materials. Hoboken, NJ: J. Wiley & Sons, 2005. ISBN: 0471246891.

Figure removed due to copyright restrictions.
See Figure 5.2 in Balluffi, Robert W., Samuel M. Allen, and W. Craig Carter.
Kinetics of Materials. Hoboken, NJ: J. Wiley & Sons, 2005. ISBN: 0471246891.



Error function solution… 

 Interdiffusion in two semi-infinite bodies


Solution can be obtained by a “scaling” method 
that involves a single variable, 
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Figure removed due to copyright restrictions.
See Figure 4.2 in Balluffi, Robert W., Samuel M. Allen, and W. Craig Carter.
Kinetics of Materials. Hoboken, NJ: J. Wiley & Sons, 2005. ISBN: 0471246891.



 erf (x) is known as the error function and is 
defined by 

! 

erf x( ) "
2

#
e
$% 2

d%
0

x

&

 An example: 

! 

c x < 0,0( ) = 0;c x > 0,0( ) =1;c "#,t( ) = 0; c #,t( ) =1; D =10"16

t = 102, 103, 104, 105 

 Application to 
problems with 
fixed c at surface 

 

63.205 L3 11/2/06 



 Movie showing time dependence of erf solution…
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Superposition of solutions 

 When the diffusion equation is linear, sums of 
solutions are also solutions. Here is an example 
that uses superposition of error-function solutions: 

Two step functions, properly positioned, can be 
summed to give a solution for finite layer placed 
between two semi-infinite bodies. 
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Figure removed due to copyright restrictions.
See Figure 4.4 in Balluffi, Robert W., Samuel M. Allen, and W. Craig Carter.
Kinetics of Materials. Hoboken, NJ: J. Wiley & Sons, 2005. ISBN: 0471246891.



 Superposed error functions, cont’d


The two step functions (moved left/right by Δx/2):
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and their sum
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 Superposed error functions, cont’d 

An example: 

! 

c "#,t( ) = 0; c #,t( ) = 0; c x $ "%x / 2,0( ) = 0;c "%x / 2 < x < %x / 2( ) =1;

c x & %x / 2,0( ) = 0;%x = 2'10"6;D =10"16

t = 101, 103, 104, 105 

 Application to 
problems with 
zero-flux plane

at surface x = 0
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 Movie showing time dependence of superimposed 
erf solutions… 
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The “thin-film” solution 
 The “thin-film” solution can be obtained from the 

previous example by looking at the case where Δx 
is very small compared to the diffusion distance, 
x, and the thin film is initially located at x = 0: 
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where N is the number of “source” atoms per unit 
area initially placed at x = 0. 
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Diffusion in finite geometries 

 Time-dependent diffusion in finite bodies can 
soften be solved using the separation of variables 
technique, which in cartesian coordinates leads to 
trigonometric-series solutions. 

A solution of the form 

! 

c x, y, z, t( ) = X x( ) "Y y( ) "Z z( ) "T t( )

is sought.
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 Substitution into Fick’s second law gives two 
ordinary-differential equations for one-
dimensional diffusion: 
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where λ is a constant determined from the 
boundary conditions. 
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 Example: degassing a thin plate in a vacuum


! 

c 0 < x < L,0( ) = c0; c 0,t( ) = c L,t( ) = 0

The function X(x) turns out to be the Fourier series 
representation of the initial condition—in this 
case, it is a Fourier sine-series representation of a 
constant, c0: 
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 degassing a thin plate, cont’d 

The function T(t) must have the form: 
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and thus the solution is given by KoM Eq. 5.47:
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 degassing a thin plate, cont’d 

Example: 

! 

c 0,t( ) = 0; c L,t( ) = 0; c 0 < x < L,0( ) =1

L =10"5;D =10"16
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Other useful solution methods


 Estimation of diffusion distance from 

! 

x " 4Dt

 Superposition of point-source solutions to get 
solutions for arbitrary initial conditions c(x,0) 

 Method of Laplace transforms 
Useful for constant-flux boundary conditions, 
time-dependent boundary conditions 

 Numerical methods 
Useful for complex geometries, D = D(c), time-
dependent boundary conditions, etc. 

183.205 L3 11/2/06 


