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Solutions 
Open Systems: Variables: S,V, N: 

dU = TdS − P dV + 
� 

µidni 

i 

where 

∂U 
� 

µi ≡ 
∂ni S,V,nj 

For the Legendre Transforms, we have: 

H ≡ U + P V dH = TdS + V dP + 
� 

µidni→ 
i 

F ≡ U − TS dF = −SdT − P dV + 
� 

µidni→ 
i 

G ≡ U − T S + PV dG = −sdT + V dP + 
� 

µidni→ 
i 

∂U 
� 

∂H 
� 

∂F 
� 

∂G 
� 

µi = = = = 
∂ni S,V,nj 

∂ni S,P,nj 
∂ni T ,V,nj 

∂ni T,P,nj 

The chemical potential, µi has different definitions, depending on the potential. However, the def­
initions are equivalent, as can be seen in the previous equation. 

Using the Euler Relations: 

U = TS − PV + 
� 

µini 

H = TS + 
� 

µini

i 

F = −P V + 
i � 

µini 

G = 
� 

µini

i 

i 

Using First Law, and Euler Relation for the Energy, one can get the Gibbs­Duhem Equation: 

SdT − V dP + 
� 

nidµi = 0 
i 

The Gibbs­Duhem relation tells you that thermodynamic potentials in a system are not inde­
pendent. A change in one of the potentials has to be accompanied by a corresponding change in 
the rest. 

At constant temperature and pressure, the Gibbs­Duhem relation implies that, by knowing the 
thermodynamic behavior of one of the components, i of the system, it is possible to determine the 
behavior of the rest. To do this we have to do a Gibbs­Duhem Integration. 



For a composite system, at constant pressure and temperature, (at mechanical and thermal 
equilibrium), the condition of equilibrium is such that the system minimizes its Gibbs free energy 
by changing its composition, ni. For each component for which there is no constraint in its transfer 
across the composite system’s internal boundaries, the equilibrium condition implies that: 

α β φ µ = µ = · · · = µi i i 
α β φ = µj = · · · = µjµj 
. . . . . . . . . 
α β φ µk = µ = = µk k 

For all φ phases and k components. 

Note that this equilibrium condition is valid, as long as the internal variables that can change 
are not coupled. For example, it is common that solids change their molar volume as their com­
position changes, so, in this case, the condition of all the chemical potential of i being equal in all 
phases is not the correct one. 

βWhen µα > µ i , and component i can pass across the α/β boundary, there will be a driving i 
α β αforce for the mass flow of i, �µi = µi −µi until the system reaches an equilibrium state. µ β = µi .i 

So −dnα = dnβ
i . Component i flows from the high chemical potential region to the low chemical i 

potential region. The mass flow of i is parallel to minus the gradient of the chemical potential of 
component i. 

Partial Molar Quantities 
For any extensive quantity, Y , it is possible to define a corresponding partial quantity Yi: 

∂Y 
�

Ȳi = 
∂ni P,T ,nj 

It is possible to define a change in the chemical potential µi of component i: 

dµi (P, T, xi)P,T = RT d ln (ai) 

Where ai is an arbitrary activity function that just makes life easier when trying to describe the 
thermodynamics of the system. We can integrate the previous equation on both sides, obtaining: 

∗ (P, T )i P,T + RT ln (ai)µi (P, T, xi)P,T = µ

where µ is the reference state at the sameand∗ (T, P ) P T .i 

The standard state µ0 (T, P i = 1 atm.) is at P = 1 atm.. 

In general, 
P�P

∂µi 
� 

¯= Vi
∗
i − µ
0 

i =
µ
∂P 

P 0 P 0 



0Since Vi ∼ 0 for condensed matter, µi
∗ ∼ µi for moderate pressures. 

partial Pressures 
When a gas is in equilibrium with a condensed phase, the activity of component i in the con­

densed phase is such that 

pi 
ai = 

Pi 

where pi is the partial pressure of component i in the gas mixture and Pi is the vapor pressure of i 
when you have a gas of pure component i over a condensed phase composed only of i. 

In general, 

ai = γixi 

where γi is called the activity coefficient of i. 

Raoult’s Law 

da1 

� 
= +1

dx1 →
dγ1 

�
dγ1x1 

x�1 1 

= γ1)x1
+ xi dx1 

= 1
dx1 1 � x1 1 

→
x1 1→ →

dγ1 = 0
dx1 x1 1→
d ln(γ1)

� 
= 0

dx1 �x1 1 
d ln(γ1) 

→
d ln(γ1)

�
= 

dx1dx2 x1 1 
− 

x1 1 
= 0 

→ →
Henry’s Law: 

da2 

� 
= 

dx2 

da2 

�x2 0 
� {0, ∞} 

dγ2 

� 
= γ∞

→
= dγ2x2 

� 
= γ∞ + x2 dx2dx2 dx2 2 2 

x2 0 x2 0 x2 0→ → →
dγ2 

� 
= 0x2 dx2 x2 0→

d ln γ2 

�
x2 dx2 

= 0

x2 0
→

Relationship between Henry’s and Raoult’s Laws: 
The Gibbs­Duhem Equation tells you that: 

x1d ln γ1 + x2d ln γ2 = 0 

Differentiating the Gibbs­Duhem equation, with respect to x2, we have: 

d ln γ1 

� 
d ln γ2 

� 

x1 + x2 = 0 
dx2 x2 0 dx2 x2 0→ →



The opposite is not true. 

� 

x2 
d ln γ2 

dx2 

� 

x2→0 
= 0

� � 

x1 
d ln γ1 

dx2 

� 

x2→0 
= 0

� 

.
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If Henry’s Law is obeyed , then Raoult’s Law has to be obeyed 

Figure 1: Raoult’s Law and Henry’s Law 

Intercept Rule: 

Figure 2: Intercepts Rule 

Proof:

For a molar extensive property, YM , in a binary system, we have:


YM =
x1 Ȳ +1 x2 Ȳ2 (1)




X21 2X2
*

MG

µ1 

 µ2

If we differentiate dYM , considering that x1 + x2 = 1 and dx1 = −dx2:dx2 

¯ ¯dYM 
� 

∂Y1 ∂Y2 

�
¯ ¯= x1 + x2

dx2 

−Y1 + Y2 + 
∂x2 ∂x2 

The last term (in brackets) is equal to zero because of the Gibbs­Duhem Equation, and we have: 

¯ ¯ dYM
Y1 = Y2 − (2)

dx2 

Substituting Eq. 2 into Eq. 1, we have: 
� 

¯ dYM 
� 

¯YM = x1 Y2 − 
dx2 

+ x2Y2 (3) 

Re­arranging, we finally have: 

¯ dYM
Y2 = YM + x1 

dx2 

For a Gibbs free energy, vs. composition curve, we have: 

Figure 3: Intercept Rule: Molar Gibbs Energy and Chemical Potentials 

Calculation of Solubility Limits: 
For a system of components A and B, and assuming equilibrium between the liquid and the 

solid phases, the following condition must hold: 

L SµA = µA 
L SµB = µB 

Assuming that component B in the solid phase does not dissolve any A, 

L L,0 L S S,0 µB = µ + RT ln 
�
xB 

� 
= µB = µB B 



Therefore, 

S,0 L,0 
L 

� 
µB − µB 

� � −ΔHm 
�

T 
�� 

xB = exp = exp
RT RT 

1 − 
Tm 

Melting Point Depression 
With the same example, 

S
� 

ai 

�
ΔGm (i) = RT ln 

Lai 

The difference in the partial molar Gibbs free energy of i is just the difference in chemical 
potentials. 

For B, we have: 

S
� 

aB 

�
ΔGm (B) = RT ln 

LaB 

ΔGm (B) 
� 

1 
� 

L = ln 
L ≈ xART 1 − xA 

And 

ΔHm (B)L xA = ΔT 
R · (T B 2 

M )

A lowers the melting point of B. Since A does not dissolve in solid B, at any given temperature 
below the melting point of B, there is a thermodynamic driving force for forming the liquid phase, 
which can dissolve A. 

Ideal Solution 

ai = xi 

for all i. 

0 0Gm = xAµA + xB µB + RT [xA ln (xA) + xB ln (xB )] 

ΔSmix = −R [xA ln (xA) + xB ln (xB )] 

Ideal Entropy of Mixing is always positive. 
Mixing is a highly irreversible process. → 

ΔHmix = 0 


