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Recitation: 5 
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See Callen, first part. 
Legendre Transforms 
In both the entropy and energy representations, the extensive parameters play the roles of math­

ematically independent variables, whereas intensive variables are derived concepts: 

∂U 
∂S 

�
V,N 

≡ T 
∂U 
∂S 

�
�S,N 

≡ −P 
∂U 
∂N S,V 

≡ µ 

In experiments, the opposite is true. 

The problem is equivalent to the following: 

Given 

Y = Y (X) 
P = ∂Y 

�
∂X 

Find 
Y = Y (P ) 

Problem: We lack information: 

Figure 1: Legendre Transforms (1) 

Solution: Need intercept, ψ: 
From the Straight Line Equation: 

P = Y −ψ 
X−0 

or 
ψ = Y − P X 

The same approach can be used in Thermodynamics!!! 
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Figure 2: Legendre Transforms (2) 

For example, let us say that we want to find a function that represents the thermodynamic state 
of a system in which we would like to control temperature, T , which is easy to measure and control, 
instead of the entropy, S, which cannot be measured or controlled using conventional experimental 
techniques. 

In this case, we would have to perform the operation: 

U (S, V, N) → F (T, V, N) 

So, using the analogies: 
U Y → 

SX → 
∂U P 
∂S 

�
V,N 

≡ T →
ψ F → 

we have, 

F = U − T S 

F , called the Helmoltz Free Energy represents, then, a state function in which T , instead of S 
constitutes the independent variable. 

The complete differential of this function is then given by: 

dF = dU − TdS − SdT 

dF = −SdT − PdV + µdN 

Similar Legendre transformations can be performed so different intensive variables take the place 
of their conjugate extensive variables, as independent variables: 

H ≡ U [P ] 

G ≡ U [P, T ] 

Φ ≡ U [T, µ] 



where H is called the enthalpy, G is the Gibbs Free Energy, and Φ is the Grand Canonical Poten­
tial, which is of great use in Statistical Mechanics....(more later). 

Above, extremum principles were stated for the entropy and energy representations. The same 
can be done for the Legendre transforms: 

Helmholtz Potential Minimum Principle: The equilibrium value of any unconstrained in­• 
ternal parameter in a system in diathermal contact with a heat reservoir minimizes the 
Helmholtz potential over the manifold of states for which T = T r . 

Enthalpy Minimum Principle: The equilibrium value of any unconstrained internal parame­• 
ter in a system in contact with a pressure reservoir minimizes the enthalpy over the manifold 
of states of constant pressure (equal to the pressure reservoir). 

Gibbs Potential Minimum Principle: The equilibrium value of any unconstrained internal • 
parameter in a system in contact with a thermal and pressure reservoir minimizes the Gibbs 
potential at constant temperature and pressure (equal to those of respective reservoirs). 

In general, 
δF ≥ 0 

δH ≥ 0 

δG ≥ 0 

Note that 

F is the work available at constant temperature. • 

H represents the heat added to the system at constant pressure. • 

G is the work available in a system at constant pressure and temperature. Only N1,N2, N3• 
can vary. This is very useful for chemical reactions!!! 

Using the Euler relation, and the Legendre Transforms, we have that: 

H = U + P V = T S + 
� 

µini 

F = U − TS = −P V + 
� 

µini 

G = U − TS + P V = 
� 

µini 

Maxwell Relations 
Since S, U, H, G, F are state functions, their differentials are perfect differentials. 

For example, 

dU = TdS − P dV + µdN 

∂U 
� 

∂U 
� 

∂U 
�

dU = dS + dV + dN 
∂S ∂S ∂N V,N S,N S,V 

So, 
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∂2U 
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= 
∂S∂V ∂V ∂S N N 

or 

∂P 
� 

∂T 
� 

= 
∂V 

−
∂S V,N S,N 

This is a Maxwell Relation for the Energy State Function. 

For the Gibbs free energy, we have: 

dG = −SdT + V dP + µdN 

So the Maxwell relations would be: 

∂S 
� 

∂V 
� 

= 
∂T 

− 
∂P T,N P,N 

∂S 
� 

∂µ 
� 

= 
∂T 

− 
∂N T,P P,N 

∂V 
� 

∂µ 
� 

= 
∂N ∂P T,P T,N 

Useful Rules: 
∂X 1

� 
∂Y 

∂Y Z ∂X Z 
∂X ∂X 
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∂Y Z ∂W Z ∂W Z 
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�
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�
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· 
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Important definitions: 

1 ∂V 
� 

V ∂T 
α ≡ 

P 

1 ∂V 
�

κT ≡ − 
V ∂P T 

∂S 
�

Cp ≡ T 
∂T P 

∂S 
�

CV ≡ T 
∂T V 

General Rule for Maxwell Relation 
In class, Prof. Ceder gave you a general rule to determine Maxwell Relations: 

∂X 
� 

∂CONJ (Y )
� 

= 
∂Y CONJ(X) 

± 
∂CONJ (X) Y 



In order to know the sign of the equality, there is a very simple technique: 

X and CONJ(Y ) should be the dependent variables of the potentials. So, we need to find a 
potential that has CONJ(X) and Y as their dependent variables. Then we write down the differ­
ential form of the potential and find the appropriate sign. 

∂P For example, get the Maxwell Relation for 
∂S 

�
V 

: 

Using Prof. Ceder’s Rule, we have: 

∂P 
� 

∂T 
� 

= 
∂S 

± 
∂V SV 

To find the sign, we recognize that this Maxwell Relation must come from a potential that has 
V and S as the independent variables. 

We immediately recognize that U → U (S, V ) and from dU = T dS − P dV we find that: 

∂P 
� 

∂T 
� 

= 
∂S 

− 
∂V SV 

Gibbs Free Energy: 
At constant pressure and temperature, the condition for equilibrium in a system is obtained by 

minimizing the Gibbs free energy. 

dG = −SdT + V dP + 
� 

Nidµi 

i 

∂G ∂2G = 
∂T 

�
P 

−S 
∂T 2 

� 
= − −CP 

T
P 

∂2G∂G 
�

= +V 
∂P 2 

� 
= −κT V∂P T T 

At constant pressure and temperature: 

dG = 
� 

Nidµi 

i 

Gibbs­Duhem Equation 
From fist law: 

dU = T dS − P dV + µdN 

From Euler Relation: 

dU = T dS + SdT − P dV − V dP + µdN + Ndµ 

Since dU = dU 
SdT − V dP + Ndµ = 0 

Intensive Variables are Not Independent!!! 
Clausius­Clapeyron Equation 



If two phases are at equilibrium, 

Gα = Gβ 

At the coexistence line, any change in the Gibbs energy of α must be matched by a corresponding 
change in the Gibbs energy of β: 

dGα = dGβ 

Therefore, 

−SαdT + V αdP = −Sβ dT + V β dP 

Consequently, 

βdT ΔV α→
= 

βdP ΔSα→

This is the Clausius­Clapeyron Equation. 

Problem 1 
Consider an insulated and rigid chamber divided by one partition at the middle. One of the 

partitions is full with a gas. If the dividing wall suddenly breaks, please determine how the temper­
ature of the system will change, as a function of properties such as specific heat, compressibilities, 
thermal conductivity, etc. 

Problem 2 
In class we saw that, for an adiabatic pull, with force, F , the change in temperature under 

constant force is: 
� 

∂T 
� −LαLT 

= 
∂F CFS


What is the relationship between CF and CP ?



