
3.20 Exam 1 
Fall 2003 

SOLUTIONS 

Question 1 
You need to decide whether to work at constant volume or constant pressure. Since F is given, 

a natural choice is constant volume. 

Option 1: 
At constant T and V :


dF = −SdT − P dV + HdM


H is a derived quantity in the Helmholtz free energy representation of this magnetic system 
and we therefore have: 

� 
∂F 

�
H ≡ 

∂M T ,V 

Given that the Helmholtz free energy of this system is expressed as: 

� 
M 1

�2 

F = A 
µ 
− 

2 

We finally have: 

2A 
� 

M 1
�

H = 
µ µ 

− 
2 

Option 2: 
If you chose to work at constant pressure instead, you need to start with the Gibbs free energy: 
At constant T and P : 

G = U − T S + P V 
dG = −SdT + V dP + HdM 

Again, H in this a derived quantity in the Gibbs free energy representation for this magnetic 
system and we have: 

� 
∂G 

�
H ≡ 

∂M T ,P 

Using the definition of the Gibbs free energy, we have: 

� 
M 1

�2 

G = F + P V = A
µ 
− 

2
+ PV 

and finally we have: 
2A 

� 
M 1

� � 
∂V 

�
H = 

µ µ 
− 

2
+ P 

∂M T ,P 



Note that H(M ) obtained from F agrees with H(M ) obtained from G when V is constant, 
since the term 

� 
∂V 

� 
disappears.

∂M 



� 

Question 2 
a) 
Under constant P and T conditions, the relevant potential for this system is the Gibbs free 

energy: 

dG = −SdT + V dP 

Since 
�

∂G 
�

= V and Vα < Vβ, the free energy of the β phase can be lowered relative to that 
∂P T 

of α by applying pressure. 

b) 
The change in the Gibbs free of transformation α β is given by: → 

β 

�
T 

�
ΔGα→ (T ) ≈ ΔH 1 − 

T0 

At constant temperature, the change in the Gibbs free energy of transformation with pressure is 
given by: 

β 
β∂G 

� 

= V
∂ΔGα→ � 

= ΔV α→
∂P T 

→ 
∂P 

To find the work absorbed from the environment, it is necessary first to find the transition pres­
sure, P ∗, at 300 K: 

βΔG (P, 300K) = ΔG (1, 300K) + P ΔV α→

Since, at the transition pressure, P ∗, and temperature (300 K), �Gα→β = 0, 

ΔG (1, 300K)
P ∗ = 

β
− 

ΔV α→

The amount of work absorbed by the environment is given by: 

W ork = P ∗dV = −P ∗ΔV α→β =ΔG (1, 300K)− 

At 300K , 

�
T 

� 
300 

�
ΔG (1, 300K) = ΔH 1 − 

T0 

= 
�
1000J/mol

� �
1 − 

350 

W ork = 143J/mol 



� 

c) 
In this case, the system undergoes a phase transition at constant pressure and entropy. The 

relevant potential is H, enthalpy. 

It is necessary, as before, to find the pressure at which the transition occurs, under this adiabatic 
condition. The equilibrium condition in this case is given by: 

Hα (S, P ∗) = Hβ (S, P ∗)


Need to find P ∗ for which �H(P ∗) = 0

� 

∂ΔH 
� 

ΔH (P = 1)

= ΔV P ∗ = 

∂P S 

→ − 
ΔV 

The work absorbed by the environment is then given by: 

W ork = P ∗dV = −P ∗ΔV α→β =ΔH (1) = 1kJ/mol − 



Question 3 
a) 
In this problem, given a fundamental equation of the internal energy of a system as a function 

of extensive properties, you were asked to find the three relevant equations of state, in this case, T , 
−P and µ. 

From the expression for the first law: 

dU = T dS − P dV + µdN 

and using 

AS3 

U = 
N V 

The three equations of state are: 

∂U 
� 

3AS2 

=T ≡ 
∂S N V V,N 

∂U 
� 

AS3 

=−P ≡ 
∂V S,N 

− 
N V 2 

∂U 
� 

AS3 

=µ ≡ 
∂N S,V 

− 
N 2V 

b) 
In order to prove that the equations of state obtained in part a) are intensive properties, i.e. their 

value does not depend on the size of the system, we need to prove the following: 

Y (λS, λV, λN ) = Y (S, V, N ) 

where Y is an intensive property of a thermodynamic system or an equation of state from the in­
ternal energy representation of the first law. 

For this particular problem, 

23A (λS) λ23AS2 3AS2 

T = = = 
(λN ) (λV ) λ2N V N V 

A (λS)3 λ3AS3 AS3 

= = =−P − 
(λN ) (λV )2 − 

λ3N V 2 
− 

N V 2 

A (λS)3 λ3AS3 AS3 

µ = = = 2− 
(λN ) (λV ) 

− 
λ3N 2V 

− 
N 2V 



Question 4 
Note that the heat capacity for this system is neither CP nor CV since the volume and pressure 

inside the bubble are not constant upon heating. 

Heat capacities, in general, are defined by CX = T 
� 

∂S 
�

X 
. In this problem, it is necessary to 

∂T 
find the condition X that remains constant and which is not V or P . 

For a simple system, it is possible to express the change in entropy as a function of (T, P ): 

dS =
� 

∂S 
�

dT +
� 

∂S 
�

dP
∂T P ∂P T 

It is possible to take the partial derivative of the above expression, with constant X:

� 

∂S 
� � 

∂S 
� � 

∂S 
� � 

∂P 
�


= + 
∂T ∂T ∂P ∂T X P T X 

Note that this looks like the ‘Zemansky Rule’. 
� 

∂S 
� � 

∂P 
�

CX = CP + T 
∂P ∂T T X 

To find CX as a function of known properties of the system, it is necessary to manipulate the 
expression above. 

We start by using a Maxwell Relation to find (considering an ideal gas): 

� 
∂S 

� � 
∂V 

� 
nR 

= =
∂P 

− 
∂T P 

− 
PT 

� 
∂P 

�
CX = CP − V 

∂T X


Need to find 
� 

∂P 
�

.

∂T X 

� 
∂X � 

∂P 
� 

∂T 

�
P = � 

∂X ∂T X 

− 
∂P 

�
T 

To find dX, we use the condition for mechanical equilibrium between the gas inside the bubble 
and the environment: 

2σ 
Pi = Po + 

r 
2σ 

dPi − dr = 0 
r2 

4 
V = πr 3 dV = 4πr 2dr 

3 
→ 



2 σ dV 
dP − = 0 

3 r V 

� 
∂P 

�
P 
− 2σ 

� 
∂V 

�
2σ 

� 
∂V � 

∂P 
� 

∂T 3rV ∂T P 
0− 

3rV ∂T 

�
P = =� 

∂P 2σ 
� 

∂V 2σ 
� 

∂V ∂T X 

− 
∂P 

�
T 
− 

3rV ∂P 

�
T 

− 
1− 

3rV ∂P 

�
T 

For an ideal gas, 

1
� 

∂V 
� 

NR 1 
= = 

V ∂T PV TP 

1 � 
∂V NR 1 1 

� 
∂V = 

−NRT �
= = 

�
= − 

PV ∂T P P V T V ∂T P P 2V 

2σ� 
∂P 

� 
+

3rT = 2σ∂T X 1− 
3rP 

The specific heat is given by: 

2σ P 

CX = CP − V 3rT 
2σ = CP − V 

3rP
T 

1− 
3rP 2σ − 1 

We then have: 

PV nR 

2σ − 1
= CP − 

3rP CX = CP − 
3rP

T 

2σ − 1 

2σIf we use P = Po + r , we finally have: 

nR 
CX = CP − 

3rPo + 2 
2σ 

Note that, when σ = 0, CX = CP . 

1 



Question 5 
a) The only way to transfer heat from high temperature to low temperature is by an irreversible 

process: 
INCORRECT 
It is possible to to transfer heat reversibly from a high temperature thermal reservoir to a low 

temperature thermal reservoir. An example: The Carnot Cycle. The first three stages of this cycle 
are: 

1. Isothermal Expansion: Heat is withdrawn from hot region to intermediate system, or work­
ing fluid, at the same temperature. 

2. Adiabatic Expansion: The system decreases its temperature at constant entropy. 

3. Isothermal Compression:The system is isothermally compressed while in contact with the 
cold reservoir. The heat taken from the hot region is transferred to the cold region in this 
step. 

b) If the thermal expansion is negative, the constant pressure heat capacity is smaller than the 
constant volume heat capacity 

INCORRECT 
Using mathematical manipulations and Maxwell Relations, we have: 

TV α2 

=CP − CV 
βT


The difference between CP and CV is always positive.


c) Enthalpy is a conserved quantity 
INCORRECT 
An example of this is when work is converted to heat. Think of the stirring of a liquid. When 

a liquid is stirred, its temperature raises, increasing its enthalpy. In this case, there are no obvious 
sources of enthalpy. 

d) In an adiabatic expansion of a material the temperature always goes down 
INCORRECT 
Think of the adiabatic free expansion of an ideal gas. In this case, since the energy of the 

system remains constant, there cannot be a change in its temperature. 

In a general case, it is possible to show that: 

− 
� 

∂S − 
� 

∂P Tα ∂T 
� 

∂V 

�
T ∂T 

�
V= = =� 

∂S ∂V 
�

CV CV βTS ∂T V T 



T α 
dT = dV 

CV βT 

Note that the change in temperature, dT depends on the sign of α, for any given change in 
volume, dV . 

e) The entropy of a system can decrease 
CORRECT 
An example of this is solidification. In this case, the system reduces its entropy when it trans­

forms to the solid phase. The environment, however, increases its entropy due to the removal of 
heat from the solidifying system. 


