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Problem 1 

A system consists of N non­interacting atoms. Each atom may be in two states, a low energy 
state with energy, E = 0 and an ‘excited’ state, with energy E. 

a) How many atoms are in the excited state? 

b) What is the total energy U of this system as a function of N , E, k (the Boltzmann constant) 
and T? 

Problem 2 

Consider a system of N distinguishable non­interacting spins in a magnetic field H. Each spin 
has a magnetic moment of size µ, and each can point either parallel or anti­parallel to the field. 
The magnetic moment is given by niµ where ni = +/ − 1. Note that since the system is made 
of non­interacting particles, the total energy of the system does not depend on the arrangements of 
the spins, i.e. the energy is constant. 
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(a) Determine the internal energy of this system as a function of β, H, and N by employing an 
ensemble characterized by these variables. 

(b) Determine the entropy of this system as a function of β, H, and N. 
(c) Determine the behavior of the energy and entropy for this system as T 0. → 

Problem 3 

(a) For the system described in the previous problem, derive the average total magnetization, 
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as a function of β, H, and N. 

(b) Similarly determine 
�
(δM)2� 

, where 

δM = M − M

and compare your result with the susceptibility 

� 
∂ �M � 

∂H β,N 

(c) Derive the behavior of �M and 
�
(δM)2� 

in the limit T 0.� → 

(Note: M denotes the average, so M = M ) 

Problem 4 

Consider the system studied in Problems 2 and 3 above. Use an ensemble in which the total 
magnetization is fixed, and determine the magnetic field over temperature, βH, as a function of 
the natural variables for that ensemble. Show that in the limit of large N , the result obtained in this 
way is equivlent to that obtained in Problem 3. 

Problem 5 

Consider a one­component gas of non­interacting classical structureless particles of mass m at 
a temperature T. 

(a) Calculate exactly the grand canonical partition function, Ξ, for this system as a function of 
volume, V, temperature, and chemical potential, µ. Your result should look like 

Ξ = exp (zV ) 

where z is a function of T and µ. 

(b) From the result of part (a), determine the pressure, p, as a function of T and the average 
particle density, ρ. 



(c) For 1 cc of gas at STP, compute the relative root mean square of the density fluctuations, � 1 
2
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.
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(d) Calculate the probability of observing a spontaneous fluctuation in 1 cc of gas at STP for 
which the instantaneous density differs from the mean by one part in 106 . 

Problem 6 

(a) Prove that if the energy eigenvalues of a system can be expressed as a sum of independent 
contributions E = EA + EB + EC (eg, electronic energy, vibrational energy, rotational energy) 
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(C)that the heat capacity can be written Cv = v v v . In addition, show that the heat 

capacity is independent of zero point energy. 

(b) Derive an expression for the electronic heat capacity assuming that there are only three sig­
nifigant electronic states and that they have energies and degeneracies given by ε0 , g0 ; ε1 , g1 ; ε2 , g . 

(c) Given that the energies required for electronic transitions correspond roughly to u.v. light 
(˜50, 000◦C), show how the calculated room temperature heat capacity of a diatomic molecule will 
change if the electronic degrees of freedome are totally neglected. What if the ground electronic 
state degeneracy is included but all excited electronic states are neglected? 

(d) Show how the room temperature entropy of the same molecule will change in these two 
cases. 

2


