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Problem 1-22

For this problem we need the formula given in class (McQuarie 1-33) for the energy states
of a particle in an three-dimensional infinite well, namely

Enanyn, = 8:;2 (n} +n}+n?), nenyn. = 1,2....
Now we can make a table

ny | ny | n: | ni+ni+n2 | Degeneracy
1111 3 1
112 6

11211 6 3
21111 6

1122 9

2112 9 3
2121 9

111]3 11

1131 11 3
3111 11

Problem 1-29




Start with the differential form for E
dE = TdS — pdV
OEY _ (08 _
(%), -1(&),-»

We can use a Maxwell relation on (%) . from F(T, V)

(8),- (%),

So,

Problem 1-41

Show that (x — ¥)? = x? — X2

=

-T2 =x2—2x+x2=x2-x + X2 =x2-2%(%) +



Problem 1-43

(=%)*
202

Here we have to plot the Gaussian |: px) = +/2_ exp(— ) :| for several values of o

to see what happens as ¢ - 0

As o - 0, the function becomes sharper and sharper (remember the area under the curve is
contrained to be 1, as we will see in problem 1-44a). Thus, the Gaussian approaches a delta
function.

Problem 1-44

Gaussian distribution is

_ 1 (x-x)
p(x) = o7 eXP( Ty )

(a) show J : p)dx =1

© 1 «-T)?
I_w " exp( 757 )dx

Let



u=%X=X thendu = _dx

Lo L0

So we now have

I: ﬁ exp(—u?)du

And using standard integral tables or the math software, it can be show that this integral is
equal to 1.



(b) n™* central moment for n = 0,1,2, and 3

Forn =0
x-x)=1 see part a

Forn =1

0 © = _==)\2
x—%) = J:w(x— X) « p(x)dx = JLOO %exp(—%)dx

Let
u=2X=%X thendu = dx
(o} 20
Then
x-%) = # j: u - exp(—u?)du :# jow u - exp(—u?)du + # j: u - exp(—u?)du

J &
Y Y

11

For/letv = —u and dv = —du. Then

1= —# I;w u « exp(—u?)du — # I: veexp(—v?)dv = -1l

Thus,

ﬁ I_oo u »exp(—u?)du = 0

Forn =2

- o0 © _ ==\2 _=\2
(x-%) = J._Oo(x— X) « p(x)dx = I_w %exp(—%)dx

Let



u=%X=X thendu = _dx
NoXe; 20
-7 = #j: 20%u? exp(—u?)du = 207 I u? exp(—u?)du

—00

Now lets take a crack at this integral....
J u? exp(—u?)du
We have to do this by parts. Remembering how to do that....

0x)" = y'x + px'
I yx = Dx]”, I_wyx

For our case, let

y' = 2uexp(-u?)du and x = _T”

y = exp(-u?)and x' = —%



So,

0

j_w u? exp(—u?)du =|:_7” eXp(_uz):Eo B J'°° (_%) exp(i?)

Which leaves us with,

Forn =3
e~ o] © —\3 = 5
R R e e

As before, let

u=2X=X thendu= -9

o N2c

Then,

o =22 [ weww)

Since e’ is a symmetric function around the origin and u? is an antisymmetric
function around the origin, the integral of the product of the
two functions is zero.

G—%) =0

(-x)*

(c) Ll}:l(}p(x) = ng(} oy exp( o7 ) 0(x — X), the delta function

The delta function is defined as



fw 8(x— a) - p(x)dx = $(a) and | °° 5(x)dx = 1

—00

So lets see if this works for our case

lim J.w +exp(—ﬂ) « p(x)dx
-0 J _ o

2r 202

_ X—d — dx
Letu = = and du v

lim# J.l exp(—u?) ¢(Gﬁ + a)

-0

Sinceo - 0

oxp(?) -9ta) = L2 [ ety ota)
-

T

=1

Problem 1-49

Maximize

W(N15N2,~...Nm) = L!

[T N
under the contraints that | N; = Nand Y_E;N; = .

Since the natural log is a monotonic function, we can maximize In(W).

M = InW(Ni,Na,....Np) = ln(n]lv—!)
l_[jzl‘Nj!

Using Sterling approximation, this can be written as



NInN-N-Y_N;InN; + D_N;

J J

But the maximization must be constrained therefore we intoduce Lagrange multipliers

M=NInN-N-Y" NInN;+3_N; —a( DN - N) - (D EN; - 2)
J J

H_/
+N

Remembering »_ N; = N and taking the derivative of M with respect to N,
oM | _ _ —l—a-BE: =
(GNJ-) InN;-1-a-BE; =0
—InN; = 1+a+ BE;
InN; = —a' — BE; ,witha' = 1 +a

Nj = exp(-a’) exp(-BE))

Problem 1-50

We want to show that the maximum of
W(Ni,Na,...Np) = =2

occurs for Ny = Ny = Ny ++ o = &
—Maximize
M =InW =NiN-N-Y_N;InN;+ > _N;

subject to the constraint Y | N; = N. So we must use Lagrange multipliers:

M=NIN-N-3 N;nN;+ > Nj-a( Y N;-N)



oM
oN, =-InN;-1-a=0

InN; = —(1+a) = N; = exp[-(1 + )]

But now we must determine «
ZNj = Zexp[—(l +a)] =Sexp[-(1+a)] =N = exp[-(1+a)] = %
=1 =1

So




Problem 1-51

Here we use Lagrange multipliers again with the constraint Zj P;=1.

N N
M=-)PilnPj—a| > Pi-1
j=1 j=1
Maximize

a_M = — . — f— =
(GPj) InPi-1-a=0

P; =exp[-(1 +a)]

Determine «

N
D Py =Nexp[-(1+a)] = 1

Jj=1

exp[~(1 +0)] =

Thus

Problem 2-1

From stat mech we get

And from thermo we have



(&)%),

To show why B # (cont) * T lets see what happens if we let f = aT where « is a constant

E) +aT(—al_7) =-p
(8V g o@n) )y, T

or

=

0 @_?) -

but from a Maxwell relation we know (

%), - () -
or Iy = Vv D and we can write

(&7 ) (5 ) =

dE = —TdS — PdV

This statement violates the second law of thermodynamics because it implies that
50 < ~TdS » =2 > ds



Problem 2-2

Given

Qn) = n!(nn—!nl)!

isny = m1?
e nj is the value of n; that maximizes Q(n). From problem 1-50, we know that

e 77 is given by

n

n!
nlzonl( ny!(n-ny)! )
oy ny!l(n—ny)!

np =

2-2-1

We also know that (given in the problem):

y=>0+x)"= ZX"I( nlg(nninl)g )

ni=0

If we take the derivative of y with respect to x we get

I I’l—l_ . ni_ n!
y = nl+a)t = me | 1(nl!(n—m)! )

n1=0

Ifweletx = 1:

n-1 _ - n!
n2 Zn](m!(n—nl)!)

n1:O

Furthermore,



n1=0

So if we put this all together back in (2-2-1) we get

77, = M= ! 2n-1 no_ _x
1= n on 2 = n
2
- (nl!(n—nl)! )
1 =nj

Problem 2-5

Show that S = —kY_ P;InP;

We have the following three relations already

_ 0lnQ
S—kT( GT) +klnQ

and




Since S P; = 1
s -wlon(3)]mno( 20
sk ewoo( 57 ) |-+ e ()
_kZPln[ el ) ) ]
= kY, PInP

% - X -Frexn(-pE)

E;exp(—pE;) 00
. ;J p(-BE; _~% __olg
0 Q op
= olnQ
E=- %

Problem 2-10

oFirst derive E = kT2< Olng . starting from the result of problem 2-8, namely

—= _ 0lnQ
=55




From the chain rule

ol _( olnQ ) or
T )y 0P

We know 8 = -= so —ﬂ = —kT?, thus

= _ 0lnQ
F=wr( )N,V

We can check this by taking k7?2 ( oo .

20 0 _E
kTQ( alanTQ )NV _ ( GTQ)N,V 2 [Zengg 5 JN,V

i ElEe0(E)] Eeo(5)-

The kT? cancels and we are left with

ol ZEeXp(——’
W( anTQ)NV: o

« J

v

definition of £

So we have shown again that indeed E = kT? angQ :

eNow for the relation involving p

Spee(h) S()en(s) TEESCR)

o o - 0

ﬁ — kT(Qo_V) — kT( olnQ

N,T




Problem 2-11

Starting with F' = —kTIn QO (Remember F' = A)

(%),

Problem 2-13

For a particle confined to a cube of length a we are asked to show p; =

S = k(228 L +kInQ

),

_ kT( oo

T.N

F=FE-TS->E=F+TS

_ . OlnQ
E=-kTlhQ+T |:kT( a5

E = sz( OnQ

V.N

)VN+kan:|

. We can start

with the equation for the energy states of a particle in an three-dimensional 1nﬁn1te well,

namely

Remembering that a*

So we have

Ej =

L : .
= Vora = V3 we can write £; in terms of V/

h2
8ma?

E;

,i
2 h*y
3 8m

2
217 3
= =}

(nx+ny +n?) =

+ny+nz)

1

V.\—

(n}+n}+n?), nenyn. =1,2....

Eqgn. 2-33

Eqn. 2-32

Eqgn. 2-31



wlo
Vl‘\m

pj =

and taking the ensemble average gives us

ﬁ:

8]\
<=

Problem 2-14

o0uy.1) = S (25T )

For P,
— Gan)
_ kT(_
P oV )y
InQ = ln(ﬁ) + 35\7 ln( 2””;kT) +NInV
7 = kYI;N
Now for E

2rwmk
E = sz( 0lnQ ) — kﬁ(ﬂL)
2 2mmkT
NV =i

Ideal gas equation of state is obtained when Q = AT)VY > InQ = Inf{T) + NInV

poir(2a0) () | r200en

— _ NikT
P ="y




Problem 2-15

We are given Q as

WV
(e (GE) U,
Q= ( 1 —exp( v P

kT

substituting in © = 4

0

) 3N
(2 )
1 —exp(=2) kT

To find ¢, we need to use the following two relations

_ Gan)
E- kTZ(—aT »

(%)

Using your favorite math package (Maple), we can get £ as

o Uo Uo+®k 20k+Up Uo Uo+®k 20ktUp
%8_7[3]\”(@8 - _12Nk®e * +9Nk®e * -2U,e" +4U,e " —-2U,e “ :|
E =
o\ 2
(—1 +e’ )
and ¢, as

o= (2 - 3o

Now we can take the lTim ¢, and we find that



3Nk

o
k®2e "N

e Tz(—l +e

lim3

o~



