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S(U,V): dS = %dU + gdv

Variableshere ard/ and Vand intensive/ariablesare% and%
Togo to% as a natural variablaakethe Legendréransform by subtracting fromS
U

So,

1 P
dJ =-Ud| = —d
J U(T)+TV

Note that/ is equal to—Z (F is the Helmholtz energy)
Similarly, go fromS(U, V) to B(U, £) by taking

P

B=S—~—

S~V
1 P
dB = —dU —Vd | =
v -va(z)

A Legendrdgransformwith respecto bothU andV” definesthe Planckfunction (Yes,youtoo
canbe famousy defining your own Legendreansform)

P U
Y=8—=V-——
SoTV T

R

Onecanshowthatthesefunctionshaveextremgpropertiegustlike the Legendreransformsof
energy.Massieu functions are maximum under constant vafubeir naturalariables.

Problem 1.2

We knowthatC, is defined as



oOH
= (a—T)P

Enthalpycan be obtained from the Legendransform of the internal energs follows,

H=U+PV
We know thatfor anidealgasU is afunctionof temperatur@nly andthe PV = RT (for one
mole),thus
OH oUu 0
— | === — (RT
(8T>P (aT)P *gr B
(g—g) » Isonly afunctionof temperaturandthisis nota functionof pressureAlso, R is nota

functionof pressureSoC,, of an ideal gasnust be independent of pressure.



Problem 1.3

F=F(TV)
OF oF
dF = | — | dT — | d
(5r ), (),
Compare this with
F=U-TS

dF = —=SdT — PdV

oF
P—‘(W)T

Using the giverformula for F', solvefor P by taking the derivativev.r.t V' at constant’".

OFN _a  _RT . (O
o), V2 Vp—b \oV),

Since {7) is only a function ofl, this term drops out and the solution is:

p__(9F) __RT _ a
o\ ) Vb V2

Therefore,

Problem 1.4

(a) We can write the differentiaiorm of the entropyas a function of T and P

08 08
5 (28) e (%) ar

Multiplying by T to get TdS (which is equal to dQ)

08 08
TdS =T (8_T)PdT+T (8_P>po

Since we are told the process is adiabafi¢sS = 0¢ = 0, so,

a8 oS
T — P=T— T
(aP)Td (aT)pd

Or,



(£> _ _(g_f’)T _ (%)P _ TaV
dp (g_ig“)P T Cy

(b) Using the aboveelationship, we can get a valtar the final temperature,

T aVv
Y e )
J7-1%

Tf OJV
In(=L)==AP
H<T%) C,

aV
T, =T, AP
f exp[c :|

p

Forthis case we can assume we hakg of material which means the volumie€.001 ni.
Remember that,, = 3o},

3-19 x 105K~ % 0.001m? * 999atm * 1.01 x 10°Pa/atm

Ty = 300
d *Oxp 2.37/g - K * 1000g

Ty = 300 * 1.0254 = 307.6 K
The only trick here is to be careful with your units and the definition pnday, .

(a) Start with the internal energy

dU =TdS — PdV + HdM
Using a Legendr&ransformation ge@ (7', P, H)

G=U-ST+ PV -HM

dG = =SdT +VdP — MdH

And since we knowthat the order of differentiatiodoes not matter
0°G B ’°G
OHOP ) \OPOH
9 (oG _ (9 (9G
OH \OP ), ; PT_ OP \OH ) p

oy __ (oM
OH RT_ OP ) yp

HT



(b) One possibility is

95\ _(ou
aH T,P_ 8T H,P

Problem 1.6
(a)
U=TdS + tdL
G=U-TS
dG = SdT + 7dL — TdS + SdT
Which yields the solution:

dG = 1dL — SdT
(b)Wealso knowif G=G(L,T) that

oG oG
- (% i+ (%)

0G 0G
T (a—L)T ands =~ (a—T>L

Sincewe know that dG is a perfectdifferential, then the secondderivativesmust be equal
independenof the order which thewre taken.

’ (o) (22)
() - (2(2))
) ()

8_U —Ta—s +7
OL). ~ \OL),

Thus,

()



Using the relation from part (b),
(), (7) -
oL ) or),
(d) If U is only a function of temperature, then
oU or
(52)7-0-7-7 (57,
Loy _1
T\or), T
LEVEL 2 PROBLEMS
Problem 2.1

(a) Startby constructinghe differentialform of S(T,P)[In Zemanskythisis calledthe second

TdS equation]
oS oS
= = T — P
5= (57), 7+ (7,
oS 0S
TdS =T | — d'+T | — | dP
> (aT)P ! (6P>T
But we know T(%)P = (, and from a Maxwell relation we kno(/g%)T =— (g—‘zf)P .So,
ov
TdS = CodT — T (%) dP = C,dT — TVadP
ar ) ,

Foran isothermal compression,

Q=TdS = —T/VadP

In the case of a solid or liquid, neither V aris verysensitiveto pressureSo,

Q= —TVa/dP = —-TVaAP
Now we can use the data givém calculate Q (Replacing with M/ p)

_ —TMaAP 298K % 0.5kg  49.5 x 10K~ % 5.05 x 10°Pa

@ p 8.96 x 103kg/m3

Q = —416J



(b)Wenow need to calculate the wordkuring the compression

W——/PdV

ov
W = —/ <a—P>TPdP

W:/VﬁPdP:Vﬂ/PdP:V?ﬂ(P]?—Pf)

Mg ~ 0.5kg *6.18 x 107 2Pa !

2 8 2
V==, (Ff) = =5 . 5.96 x 10%kg/m? (5.05 x 10°Pa)

W =44J

(c) We know the first law,

AU =Q +W = —416J + 44.J

AU = —-372]
Thusit canbe seenthatthe extraamountof energyin theform of heatcomesfrom the storage

of internalenergy.

(d) Now we cango backto the relationshipwe obtainedfor 7'd.S (which we know is 0 since
theprocess is adiabatic and reversible)

TdS =0 = C,dT — TVadP

T aVv
Y e )
J7-1%

Tf OéV
In(=L)==""AP
“(T) Cy

aV aM
Ty =T, exp [—AP} = T;exp [—AP]
/ C, Cop
0.5kg * 49.5 x 1079 K~! % 5000atm * 1.01 x 10° Pa/atm
8.96 x 103kg/m3 % 385J/kg - K x 0.5kg

Ty = 298 exp [
Ty = 300K

AT =300 — 298 = 2K

Problem 2.2



In terms of T and R{U can be written

ou ou
dU = | =—= | dT — | dP
o= (5r), 7+ (57),
We can evaluatéhe twopartials(9%) , and (5%)... usingU (.S, V) which we know

dU =TdS — PdV

(7). -7 (57), 7 (&),

Which can be simplified since we kna, = T (%)p andVa = (g—V)P

ou
(8_T>P = Cp—PVOé

(55), -7 (), 7 (55),

which can be simplified using the Maxwell relati¢#2) . = — (55) , andV 3 = — (%5)

So

Similarly

oU
<ﬁ)T =-TVa+ PVB=V(GP —aT)

Putting this all together,

dU = (Cp — PVa)dT + V (3P — oT) dP

Problem 2.3

Giventhedefinitionof dH : dH = TdS + VdP, we wantfirst to determinehow the enthalpy
varieswith pressure, atonstantemperature:

oOH oS
(a—P)T—T(a—P)T”

By using the Maxwell'Relation

(@), =~ (&),

(from theexpressiorior the Gibbs Free Energynd the definition

1 (v
v\ar),

v



, wehave:

(2) v

Whatwe arereally interestedn is to find how AH,,., = H"*? — H" changesvith tempera-

ture:
aAHevap . 8[Hva,p_Hliq} o OHvap 8Hliq
oP ) oP _(ap )T_ oP ).
T

<8Ag]§vap)T — (Vv(zp _ Vlz'q) _ (Vvapavap _ Vliqaliq> T =~ Y/ vap (1 - avapT>

In generalat relativelylow pressures and densities, gélsesehavdadeally.

1 (oV _ nR __ 1
Foran ideal gas, &=  (%7), = & = 7 Therefore,

OAHewy\
oP ),

Given

U(S, X) = X%exp(bS)

First find the equations of state

T = (a—U)X = X®exp(bs)b = bU(S, X)

oS
_ ou _ a—1 _ CLU(S,X)
f= (GX)S_GX exp(bs) = e

From these we can deritke followingwhich will be useful later

L
= (bXa) @
T fX
3= 2)
U(s,X)= 7 3)
X = [5 exp(—bS)} h (4)

Starting with the first functiorD (S, f) we perform a Legendreansform as follows



Now using (4) to get this in terms of S and f only

(1—a)a
D(S,f)=(1—a) {g exp (—bS)} exp(bS)

Similarly for F(T,X)

F(T,X)=U ~TS =U(S,X) — bU(s,2)S = (1 — bs)U(S, X)

Using (3) and (1) from above
T T
F(T,X) = |:1 — ln (W)} g
Now we do a transformation for to both T and f

KT, f)=U-TS—-fX
Using (3), (1) and (2)

Problem 2.5

(a) Start by using the chain rule on the left side of the equation

(), = (), (57).

= £¢ andwe can expanthe second derivativas follows

ory __(or\ (ov
oP),  \oV),\oP),
Putting those together,

Cv (0T (VN _ Cv (1)
T \ov),\or), T \Va

We can replac&’y by Cp usingthe relationship

We know that (g—i)v



Yielding

s\ 8 TVa®]  Cpf
(ar), = a0~ 5] = 7 e

(b) We can expandhe derivativeas follows
ory __(ory (s
oP)¢  \9S),\oP),
Thefirsttermis Z- andthesecondermcanbetransformedisinga Maxwell relation (53, =
oV
(o), (or)
oP)y Cp\OT ),

—(%7), - Thisgives
a_T _ TaV
orP)s Cp
(c) Start with the left side

aT
0*P 0 oP
r(57), = o7 (7).,
Using a Maxwell relation,
2

r 2 [(OPY ] 2 [0S\ ] _p_@S

ar [\oT )] or [\oV )], 0Ty OoVry
Now the right side

0S oc,\  [(oT 0S 0 0S

C“—T(a—T)ﬁ(av)T—(W)T(a—T)V”WKa—THT

Thefirst termin the aboveis zerosincethe changen temperaturat constantemperatures
zero. The second term can be written as

2
r 0 [(S\ ] _p oS
ov |\oT )|, ovroTy,

And since we knowthe order of differentiationloesn’tmatter

2 2
oS T@S

T pum
oTyOoVry oVroTy




Problem 2.6

(a) Start with the differentidiorm of G

dG = —-SdT + VdP
0G oT OP
(a—T)V - (a—T>V v <a—T>v
0G oP oV
(a—T>V Y (W)T (a—T)P
oG —1

oG Va
(a—T)V:TS

(b) Start with the differentiaform of H

dH =TdS + VdP
OH oS oP
(a—T)P—T(a—T)PW(a—T)P
OH\ _TCr
or), T

oOH
(a—T>P =

Problem 2.7

(Forthis problem Maple is our friend)

(a) This partinvolvestakingthe indicatedderivativesof the givenfunction. Thetwo tricks are
knowingwhat is and howto change(g—g)T into something with derivativesf P w.r.t T or V.

-1 /oV
=7 (),

and using the differentidbrm of U and a Maxwell relation we get,

oUu oOP
(W)JT(a—T)V‘P

The solutions are then



0
s (=L 1) (V —b)?Vv?
AV /) \(&),) RTV?—2aV?+4aVb — 2ab?
oU RT a
- = _p=_
(), 7557

(b)Remember

_L(ov
““v\ar),
R

VP

Expand H in differentiaform to try and ge g—fﬁ)T into a form you can solvéor

«

dH =TdS + VdP
OH a8
<a—P>T—T(a—T>T”

OH oV
(a—P) =7 (a—T)P”

OH —TR
(a—P)fT”:"

Now for Cp — CV

TV o?
Cp—Cy = 3
R3T?
Cp—Cy = m

Problem 2.8

1 pV*
U_mpv+Nf(Nk)

dU =TdS — PdV

Fora reversibleadiabatic process,



(dU)s = —P(dV)s

Along a reversiblediabatic process?V* = —g(9) so

P=—g(s)V"

Againfor a reversibleadiabatic process

Integratefrom V;, — V atconstant S

U(V.8) = U(4.8) = 725 [ — 7

Moving things around,

U(V,S) = (_gk(s) V,fl) + {U(VO,S) + A]

o) =1Ly [U(VO,S) + (_%}

<

g

The second term above only a function of S, so we can call it some functiofs)

PVF 1 PV

UV.8) = gy +wld) = (k—1)

+ w(S)

w(S) is an extensivefunction, thereforeit canbe written asN (the numberof molesin the
system}imes a molar quantity'(.9)

which is independent of the system size

k
U(v,s) = (kp_vl) NS (P%)

Problem 2.9



The thermal expansivitis defined as

SV \dT ),

(), = (),

And we are told in the problem that S is independent of crystallite structure and pressure, so

0S8
(a—P)TO -

Using a Maxwell relation,

And thus a= 0 atabsolute zero.

| Problem 2.10|

(a) The keyproperty is that(g—fI)T < 0. This can be provefrom the Maxwell relation.

(@), = (7),

(this canbe provenfrom thedifferentialof dp = d(U — TS+ PV — MH) = —SdT + VdP —

MdH ) and since
oM S
(5r), <0 = (om), ¢

S(T') as constant thereforehas the followingshape.

Adiabatic demagnetization consists of tateps:
I. Isothermal application of a field
II. insulatematerialandturn off the field — isotropic demagnetization Systemmoves
backto state withH = 0, hencel” decreases.

(b)
<3_T) _ G (G
OH S (g_TS’>H c%{
(8_T) _ T (5
0H), e

We can evaluaté 221 ., asfollows

%4 oM %
M=—H = <6_T)H_ =l



H=0

H>0

I1

Figurel.:

So,

(

Q’J|Q’)
S

)s - g;z

LEVEL 3 PROBLEMS
Problem 3.1

Given:

(6N . (RO\. .,
u- ()5 - (i)

(a) We wantto makethis the absolute U and not the molar quantstymultiply by N.
No NRf N6\ [ S\° [(NRO\ [(V?
= NU=(—-"2)8%2_ === 2 [ =2 ) (22 2
r-ve=(F)s- (5 )= (%) (5) - (%) (5)
1 0\ .o RON _,
5|7 (@)

The equations of state gives

oU 2 )
T= (%)W—N(ﬁ)S



or

(b) Expressu as a function of T and P

szﬁ(g)T

2
N (V2
5(@)13

§2T2— @ E V_022p2
0 Vi) 4 \ RO
i

0

V=_—

Substitute in to the expressidor 1

Problem 3.2

Start with the expressiome used in class

(@)= (2),+(3), 37).

For this problem,this equationcanrelatethe constant/ heatcapacityto the constantP heat

capacityas follows,
05\ _ (95 (08 (0P
or), \or), \or),.\oT ),
To get heat capacity we need to multiply both sides barid when we do this we get

08 OP
et T —_ _
Ci=Crt (8P>T <8T>l

The first derivative can be rewritten using the Maxwell relation (5),. = — (25),, which
simplifiesto



ov oP
ci —CP‘T(a—T)p (a—Tl

And since we knoWhat(g—g)P =Va

oP
Cl = Cp —TVa (8_T)l

Now we need to expanthe second derivative

(57),~ (50), (&7,

Since the material is isotropi g’—}) = %Voz which now leaveus with

P

B 1. o o [0P
Cl—Cp—i-?)TVOé (81>T

One more patrtial to go....if we look at the relationship between stress and strain,

o = Feand thus(a—0> =F
Oe ) ;

whereE is the Young’smodulusfor anisotropicmaterial. To getthisin aform we canuse,we
needto multiply by to switch fromoe to 0l andthen invert.This then will giveus

1TV?a?E

Cr=Cpt 37—

The total systemis at constantvolume and temperaturehenceits Helmholtz free energyis
minimal with respect to the internal degreafsfreedom.

o &

T
| Tasy

Figure2:



dF* = dF® + dF”

AF' = —8%dT — p*dV® + pSdnS — S°dT® — p?dv?® + pfdn’,
since d1* = dT° = 0 anddV* = —dV*? anddn% = —dn’; we can write
AR = — (p* = ) Ve + (s — 1) din

If dV* anddn9 wereindependentequilibrium would requirethatp® = p” andu$ = /Li.
HoweverdV* anddn are NOTindependent!

dV® = Kdn?,

a _ 0
dFtot — (/’LAKMA o (pa _pﬁ)> dve

J/

'

The bracketederm must equal zero for equilibrium.

pg — Kp® = py — Kp°

Problem 3.4

Theheatcapacityc, is relatedto thetemperaturelerivativeof the entropyunderthe condition
z. (x being the conditions defined in the problem statement)

oS
Starting withS (7', P) we write
S S
=(=) dT'+ (== dP
5= (57), 7+ (7).
We can takethe temperature derivative this holdingz constant
0 0 S S
— =— (=) dI'+ (=) dP
o1 ) aTKaT)pd *(8P>Td ]
9\ _¢  (05\ (0P
or), T \oP),\oT),

(Note: The abovecan also be obtained usir@ﬁ)z = <8—§)y + (g—g)f (%)Z)



We know througha Maxwell relationthat (95).. = — (2%),, = —a,V. Sonow we needto

find (4%)_ . We startirom thegiven informatiorthatV’ — aP = a constantthusdV’ = adP. This

givesus
ory _1(ov
or), a\oT),

Continuing from there, we write out the differentfarm of V' (7', P)

ov ov
dV = (a—T)PdT+ <8_P)po

But we know(5¥%) , = o,V and(%5) . = —3rV. We now have

P

dV = a,Vdl' + —prVdP

So (%), is givenby

Replacing(9%) weget

8_\/ —aV — orv 6_V
or). ~— a \oT),
a_v _ a,Va
oT = N a—+ BTV
Putting this all together...

(g% = F+ (o) (1) (g_;)
(%Si)m = Z+(~aV) (2) (aig:v)

oS a,Va
r(or) o rean (0) (5%0)

So we get finally that

or

_ . _ T(V)’
— % a+prV




