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LEVEL 1 PROBLEMS

Problem 1.1

Gasisheating in arigid container from 7, = 40°C to Ty = 315 °C

AU =U(Ty) —U(T,) =W +Q (First Law)

(@ | W = 0|Since only PV work ispossible & AV = 0 since the container isrigid.
Q=AU= (01771 +C) — (0.17T, + C)
Q=AU = —0.17(Ty - T,,) = | 46.75}

(b) Entropy change:

S = ? (for reversible heating)
since OW =0
16Q = dU | =0.17dT
0.17dT
ds =
s T
or,
™ o.a7dr T ]
AS :‘/T T = 017111 (j_'()) = 0107]‘97
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Problem 1.2

P
45+ 1 2
5+ 110°C
1
20°C
v
Calculate entropy change by going from 1 to 2 according to:
(1 — 1’) A reversible isothermal compression
(1" — 2) Followed by an isobaric heating
Entropy change1 — 1’
AU =0 (U =U(T))
Q=-WorsQ =pdV = —”‘@Tdv
6Q nR
dS=-—=—-d
S T v Vv
’ ‘/1/ Pll J
1—1" __ o — - — -
AS =nRIn ( " ) nR1n ( P ) 36'53mole e
Entropy change 1’ — 2
0Q = cpdT (isobaric heating)
7
Cp = néR
6Q  cpdT 7 _dT
dS=-"*="" = pnR -
S=p T Ty
, 7 15 J
1'—2 _ % —
AS = 2ann <T1/> 15.5977”0167 I
Now for the total process
A = AV 4 ASY 2 = 2004 T
mole — K



\ Problem 1.3
@

—Fe

912 T

912°C 0°C
AHp, = / cpdl +AHT + / cp,adT
1100°C 9120C
J o o J J o o
AHp, =34————(912°C — 1100°C) — 900 + 38 (0°C —912°C)
mole — K mole mle — K

\ AH.=-41.95kJ \
(b) System Fe+ice water is adiabatic -~ AH =0
AI_IF(:' = AHicewater

AHpe = —(Mice AH p,c4ing) » Mice = Mass of ice transformed
1mol
e — AHFe _ 419507nole K * 100 * 569
AHnLeltzng 6048 nwle * 11778L‘(q)l

Mjce :2239

Problem 1.4\

Diatomic ideal gas => ¢,=T R and ¢,=3 R

reversible adiabatic path

15 atm

1 atm—+

298K istotherm




Assume the processis reversible.
1—-1
There are two methods one can use to find the work done along this path. For both approaches it will be useful to

find p, V, T for the starting and ending points. We are given the starting pressure, volume and temperature and the
final pressure. From this we can calculate the final volume and temperature.

mV, = p1Vy) (withy = % = %)
‘/17 _ pl‘/l
by
Vir = 6.919m*
Thefinal temperature can be found with a similar relation
W1yt =Ty (withe = S = 32)
Iy
TC/ ==
1 ‘/1/
Ty =137TK

It will also be useful to calculate the number of moles from pV' = nRT giving n = 615 moles. In summary the
conditions at each point are

1 1’

p (Pa) | 101300 | 1519500

V (m?) 1 6.919

T (K) 298 137
Method |
Start with

PV =p V)
with~ = z—f = g
Y
P="y5

So,

1/

av
w= [ —pdV = —p1 V) —
/ thov

L | R R
w = — = _ - —
AR VAN A5 PR Ol VAN AL AL

Inserting in the valuesfor P, V, v we get
|w=—2.03MJ |

Method 11
Start with the known fact the the internal energy of an ideal gasis only afunction of temperature.

AU:QJrW:/ncvdT
However, since thisis an adiabatic path, @ = 0 and the work done issimple nc,dT’
w=nc, (T —T1)



1" —2

This processis at constant pressure, so the work is given by

2
w:—/pdV:—pg/ av
1/

w=—p2 (V2 = V1)
We just have to fine V5. That can be done easily by using the equation of state of anideal gas aong an isotherm
PyVe = P Vy
Vo = 15m*

w = —101300 Pa x (15 — 6.919m?)

w = —819kJ

Wiot = —2030 + —819 =

The total work done isthen

-2849kJ

Problem 1.5

Function 1: df; = y(3z? + y?)dz + x(x? 4 2y*)dy
(1) Integrate dong y = = (dy = dx)

1
/ 2(32% + 2%)dw + x(2* + 22%)dx
0

1

1 1 7:1:_4
/ (42® + 32%)dx = / T2tdr = [4} =
0 0 O
(2) Integrate dong y = 2% (dy = 2xdx)

NI

1
/ 22322 + aY)dx + x(x? 4 22%)2xdx
0

1 791
/ (528 + 5at)dx = [335 + 5?} =1
0 0

Function 2: df; = y(3z?% + y)dx + z(2? + 2y)dy
(1) Integrate dlong y = = (dy = dx)

1
/ 2(32% + y)dx + z(2* 4 22)dx
0

1 474 323710
/(4m3+3$2)dx: =y =2
0 4 3 0

(2) Integrate dong y = 2% (dy = 2xdx)

1
/ 22 (322 4+ 2%)dx + x(2? + 20%)2xdx
0
1 511
1
/ 102*dx = [Ox} :m
0 5 lo

Since function 2 is path independent it is an exact differential.
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Problem 1.6

15 atm —++

1 atm -+

300K istotherm

dU = dw +6Q)
Thisisan ideal gasso dU = 0 along an isothermal path.

@
RT
Sw=—pdV,p=—r
w=-—pdV,p=

1
w:/ RTdVRT1n<V2 RT1n<p2>
2 Vv b1

1

w = RTIn(15) = | 6754.]

(b)
AU =0=Q=—w
O = —6754]
(©
H =U+PWV
Hy =U; + PVs

For an ideal gas at constant temperature (7}, = 13) = U; = Us
AISO,WhenT1 =Ty, — PVi = PV,

Therefore
H, = H,

@ 6Q _pdV _nR
77:]77:7”
dS = 7 = = dv
L2 P2
AS=Rln|-=2)=—-Rln| ==
S Rn< 1) Rn<P1>
AS = —22.5%
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\ Problem 1.7\

(8) Work done in the processis:

final
w = / —pdV

nitial

Define water as the system
Initial State = Liquid
Final State = Vapor

Vyapor
w=— / pdV.
Viig

So we write

Vaapor

w=—p / av (Since p is constant)
Viig

w = 7p(V - Kliq)

Y vap

Since the specific volume of avapor is much larger than for aliquid

10°P J
WPV, = ——— = 167504 = 1672
pvapor 05927?3 kg g
Thisis about 7.5% of the heat of evaportation
(b)
H=U+pV

AH = AU + A(pV) = AU + pAV

AU = AH — pAV
AU = 22617 — 1677 = [ 20047
g g g
Conclusion: The heat one hasto transfer to water to evaporateit is partly used for increasing the internal energy of
water (2094 él breaking bonds) but aslo for the work required by the vapor expansion.

\ Problem 1.8\

P < ?
reversible adiabatic path

1

373K istotherm




Given:
p1 = 1L atm = 101300.%;
Vi = 1 liter = 0.001m"
Vo = 2 liters = 0.002m>
Ty =T, =373K
Need to know how many moles of gas:
n— W
RTy

= 0.033 moles
1 — 2 (isothermal)

1 N
p1Vi = paVa = p2 = Satm = 50650 —
2 m

Va Va _
wl™? = / pdV = / nRTdV = —nRTIn <V2>
\%1 \%1 V ‘/1

w!7? = —nRTIn2 = —-70.9J
2 — 3 (isobaric)
p3 =Dp2
psVy =p V)
withy = » = 2 for monoatomic ideal gas

1

Y\ ~

Vs = (plvl ) — 1.52liters = 0.00152m®
p3

N
WP = —py AV = — (506502> (0.00152 — 0.002m?)
m

w7 =24.3J
3 — 1 (reversible adiabatic)
Vi
w? ! :/ —pdV
V3
pi VY
PV =pV] = p="0
Vi Y Y
w3~>1 :/ 7p1‘/1 dv — pl‘/l ]‘71 _ ]‘71
Vs Vo y—1|v) A

wt=37.1J
So the total work doneis
whotd — 172 4?73 43l = 270,94+ 24.3 +37.1

wiotel = —9.5]

\ Problem 1.9\

(i) The amount of work done by the gas is zero, since the gas does no work on the surrouindings outside of the
chamber. The expression w = [ —pdV cannot be applied since the process is not reversible.

(ii) The walls of the chamber are insulating, thus @ = 0 and from (i) w = 0. ThHuUSAU = Q + W =0

(iii) For an ideal gas U is only a function of temperature. Since for a free expansion in an insulated chamber
AU =0 = Tinitital = Tfinal

(iv) For anon-ideal gaswhere U = f(T, V') , T will change after afree expansion in an insulated chamber since
V changesand AU = U(T¥inat, Vyinat) — U(Tinitial, Vinititat) = 0
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(Most gasses at low pressures can be well approximated as being ideal gasses)

(v) If now the walls of the chambers conduct heat, for an ideal gas U = U (T) is till true. The initial and final
states are in equilibrium with the environment. Thus

T%nitial = Tfinal = Tenvironment

(vi) For non-ideal gases AU # 0 sinceU = U(T, V') and V changes.

LEVEL 2 PROBLEMS

\ Problem 2.1

(@ AS =0
() AS >0
(©) AS >0

\ Problem 2.2

Given information

Vi=1m? Vi ="
P, =15atm Py =2atm
T, = 298K Ty = 298K
(8) Find the final volume after the expansion
P;V; = PfVy
PV; 151
Vi=p =
Vi = 7.5m3
Finding the number of moles, n, will be useful for partsb & ¢
L-at
R =0.08205— " 1m3 = 1000L
K -mole
PV _ - 15%1000
RT " 0.08205 * 298

n = 613.5 moles
(b) Find the work done if the processis isothermal

w:—/pdV

w=—nRT In (y) = —8.314 x 613.5% 298 % In <715>

w = —3006 kJ

(c) Find the work in the multi-step process



reversible adiabatic path

15 atm —-

2 atm -

Two parts:
(1) Adiabatic expansion from 1 to 2/

(1) Heating at constant P from 2’ to 2
(’LU[ + U][[) + (Ql + QII) = AUsys

Since state 1 and 2 are at the same temperature and U for anideal gasisonly afunction of temperature, AU,y = 0

and
(wr +wrr) = —=(Qr + Qrr)

So we can calculate w’sor Q's. Since Q; = 0 (adiabatic process) let’s calculat Qg
QII = TLCPAT = TLCP(TQ — TQ/)
= 613.5 moles szfQ #
"= ' P T o T e - K

Need to find 15/
R
P2/ ;
Ty =T;

T 2 2 i 168K

Now for Q;
J
Qrr = 613.3moles * 29— % (298 — 168K)
mole - K

Qrr = 2313kJ

&)y
Wiotal = —(Qr + Q1) = —(0 + 2313k.J)
| Wiotal = —2313kJ |

Problem 2.3

U= Ap*V (A = positive constant)
dU = dw +6Q (First Law)

Along areverisble path, OW = —pdV when only p-V work is possible.

Along areversible adiabatic path, 9@ = 0 and therefore
dU = bw

10



oUu oUu
dU=|—1| d — | d 1
v=(a), o+ (ov) @
<8U> =2ApV
op ) v

8U>

— ) =Ap?
(5v).

(2ApV)dp + (Ap*)dV = —pdV

2AVdp = —(Ap + 1)dV
dp  av

(Ap+1) 24V

Going back to equation 1

After intergration
In(Ap+1) InV

= —-— constant
A o4 T

In [(Ap +1) V%] = new constant

(Ap + 1)V 2= even newer constant

Problem 2.4

(8) Using thefirst law
AUsys = Q(500°C) + Q(300°C) + W + Q(25°C) = 0
1L5MW +0.5MW — 1MW + Q(25°C) = 0
1Q(25°C) = —1MW |

(b) Chack to seeif the second law is satisfied
6Q

dSnmchine Z ?

But dS,,qchine hasto be zero since we are operating at steady state

Q(500°C) | Q(300°C) | Q(25°C)

<
T s 208 = 0
1.5MW N 0.5MW 1MW Cs106 J
773K 573K 298K K -s
-542.6;2. <0
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Problem 2.5

P | reversible adiabatic path
100 atm —

where the gas
really ends up

2 atm

@
AU=Q+w
Since the processis adiabatic, @ = 0
AU = ne, AT =w

5 J
1 [ —83l4——— | AT = —
(10 moles) (2 8.3 o K) 80000J
AT = —385K

Ty = 388K

ASIH?) = ASIHQ + ASQ~>3

(b)

AS;_.o = 0 sincethis processis reversible and adiabatic

AS,_,3 is at constant pressure, temperatre varies— (g—;)

What isT; though? The temperatre that would be reached if expansion was reversible.

B 2
P2\ r 2\"
T =T = =773 | — | =253K
: ' (pl ) ( 100)

38 4r 7 388
ASs_, :/ c~8.314~ln<>
T s P T 2 253

J

mole - K

ASy ,3=124

Problem 2.6

In case (b) extrawork is done on the gas so that its internal energy will remain higher thanin (a)

Ty > T,

\ Problem 2.7\

(a) Total amount of energy required
-Necessary heat input is the total enthalpy change of the material (since p is constat)
-Determined by the final and initial state

12



10L
500 ™\
60 L
80°C
50L G 4
80°C

-Enthalpy change isonly dueto the 10 L (the 50 L remains in exactly the same state)

dH = ncpdT
1000g . 1 cal
L g-K
AH =750 kcal = 3140kJ
| AH = 0.87kWh|

AH =10L % * TOK

(b) Entropy change
-Again,entropy change is soley determined by the final and initial state

drl’
S = —
nep T
- 1000g 1 cal 353\ kcal
— J
AS =9993 4

Problem 2.8

dVv Vs
=— [ pdV=-RT | — =-RTiIn( .-
w1 /p 1 % 1H<V1>

w3 = —RT In (:;4)
3

The second step where Q2 = 0 givesdU = dw

BdT = —pdV = fRTdvv

Bln E =—Rln E
T Va

and the fourth step
Ty |41
Bln<T3> Rln<V4>
Thus
Vs _Va WiV
Voo i Vo V3
and

13



wy Vi Vi) _ —ws
(1) (1) -
T3> _w (T-T)  ws(Tz-T1)  QIT-T1) QT3 -T)

—W = W - w3 = —wp Wy (T
1

By drawing the heat 5 from a heat souce at T35 one may ths produce mechanical work in the amount of %;Tl)
if the rest of the energy, Q;—STlcan be disposed of as heat to aheat sink at 73

Problem 2.9

T Ts T - Ts

ASuniverse = ASsys + ASenvironm,ent
There isno heat flow into the environment, so

ASenvironm,ent =0

But for the system (the gas) —
-Thegasgoesfromstate 1 a P;, V;, T; toastate2 at P,, V,, T, (= T;) with P, < P;
-To compute the AS,,, we need to how the entropy changes with pressure (or volume) at constant T

oS ov .
<8P> =— (5‘T> (Maxwell Relation)

(5“/> - %
Y
i

n)>o

and for an ideal gas

since P, > P,

Since ASyniverse > 0 the processisirreversible

Problem 2.10

TocaculateU(P, V) forany (P, V) givenavalueU (P,, V,) a some (P,, V,) itissitable for this system to follow
the path sketched below.

; reversible adiabatic path

V., P

(o}

14



First gofromV,, P, — V,, P (i.e. constant volume)
A constant colume, if only P-V work is possible

dU = 6Q
AU =U(P,V,) ~ U(P,,V,) = Q = A(P' — P,)

P’ isunknown, but we do know because of the path we chose from (V,, P,) — (V, P) that (V,,, P') and (V, P) are
connected by areversible adiabat. Therefore,
.
P'V)=PVYorP' =P (“;)
&)y

U(F' Vo) = U(Po, Vo) = A(Pr — P) (with = )

Second go fromV,,, P’ — V, P
Along the reversible adiabat () = 0 and therefore

14

AU =U(P,V)-U(P,V,) = 7/ P*dV*
Vo
with P* and V* representing values along the adiabat going through (V, P). To calaculate thisintegral use
P*V* = py
PV
P ="
V=
&)y
14
av=
AU = — PV?
Jo P
vy v vy
AU — PV 171 _ PV 1 B 1
(fy — 1) yxO-D v, (fy — 1) V(-1 V'O(”Y*l)
AU =U(P,V) - U(P,V,) = £%; (1-r7") (withr = %)
Combining the first and second step
AUty = U(P,V) = U(Po, Vo) = A(PrY = Po) + £V (1=1771) (withr = )

LEVEL 3 PROBLEMS

\ Problem 3.1\

Thereaction at 1200K is
2NH3 — N2 + 3H2

P = "L TandV are constant but n increases by afactor of 2 in the reaction. Therefore

Py =2PF;, — ‘ Py = 20atm

(b) Heat flow
The system is underconstant volume (dV = 0) so W = 0 and
AU =Q
We can compute U from H because
U=H-PV

15



AU = AH — A(PV) = AH — A(nRT) = AH — RTAn
kJ

mote

AH =87 and An = 2 moles

AU = 87000L —(2) (8.314J> (1200K)
mole mole - K

AU =|Q = 67046—<

mole

(c) System is adiabtic and under constant volume— AU =0
$1
Ta

AUreaction + / (CU’NZ +3CU,H2 )dT =0
1200

Ta — 1200 — AUreaction
Cv;Nz +3C’U5H2
usec, — ¢, = R
670467
T,=1200 — — —mele
4 % 24686m

T, = 521K

The system cools down which is expected given that the reaction is endothermic.

Problem 3.2

We can define the system as the gas in the tank (n, moles) and the gas that will be squeezed into the tank (n.
moles). It will helpful to define some variables

P, =Theinitia pressurein the tank

Py =Theexternal pressure pushing gasin

T, =Theinitial temperature of the gas

Ty =Thefinal temperature of the gas (what we want to solve for)
V' =Thevolume of the tank

V¢ =Thevolume of the gas pushed in

We can write the following relationships

PV
Ny =
RT,
PV
No +Ne = ——
RTy
V.= n.RT,
Py

Since thisis an ideal gaswe know that the internal energy change is only afunction of temperature, given by
AU = (no + ne)eo(Ty —T,)
Givem that the process is adiabatic (isolated),

AU=Q+W =W (Q=0)
But for this case we know that
W = PsV. = n.RT,

16



or the external pressure (which is constant) times the volume of gas pushed in. Now we can just work through
eliminating variables to find the final temperature.

neRT, = (no + ne)co(Ty — 1))

P
neRT, = fvcv(Tf ~T,)

RT;

PV PV PV
RT, - = Ty — T,
(Rﬂ~ Rn) gy T = 1o)

P;RT, — P,RTy = Pyc,(Ty — T,)
PfTO(R + Cv) = Tf(POR + Pfcv)
PfTO(R + Cv)

P,R + Pyc,
Treating air asadiatomic ideal gas, we can usec, = gR and solvefor T’

~ 298-1-(R+ZR) LAY
77 (05R+1-¢,)

6
Ty = 347.6K

Ty =

\ Problem 3.3\

Assume that the volume change resulting from the reaction A + B — AB is AV and the heat of reaction is ().
During the reaction, the system will perform work against the environment which has a constant pressure P,. Since
the pressure of the environment P, is constant, the external work done by the system is

w=—P,AV
Using thefirst law
AU = Q — P,AV
Q =AU+ P,AV

In the initial and final states of the reaction (both equilibrium states), the pressure of the gas has to equal P,
(otherwise they wouldn’t be equilibrium states). Thereforeif P isthe pressure of the gas

P=p,
or
Q = AU + A(PV)

Q=AH

where A H isthe difference of enthalpiesin theinitial and final states.

\ Problem 3.4\

Closed system solution
System is gas flowing into the tank
Up-U1=Q+w=w (@ = 0 (adiabatic))
Uy — Uy =PV

For an ideal gas,

U2 - U1 = TLCU(TQ — Tl)

Pl‘/l = nRT1
17



Nncy (T2 - Tl) = nRT1

CUTQ = (R + Cv)Tl = CpTl
T, =2n
Cy
Open system solution
System isthe tank

H,m; =Uy —U; =Uypmy
Uinitiat = 0 because minitiar = 0
Ty =2
\ Problem 3.5

ot

Cy

(8) Gasintank | isundergoing an adiabatic reversible expansion

R
L (P
T, \P
5\ 75
IR
T, — 9\ 2
D) 300(1())

Ty = 246K
(b) Try to get Ty, from the fact that

AUt = AU + AU =0
internal energy change of gas that endsup in tank 11.

because the total system isisothermal. AU; istheinternal energy change of gasthat remainsin | and AUy isthe

AUrr = nrreo(Trr — Th)
need to find n;

AU[ = TL[CU(T[ — Tl)

PV
n=_-"_
RT
Efﬁﬁf 5 atm 3OOK*061
ny Ty Py 10atm 246K
now from AU; + AUr; =0

nrr = 1-— nr= n1(1 - 061) = 039711

AU[[ = *AU[
0.39n1¢, (Tr7 — 300) = —0.61n1c,(246 — 300)

Ty = 384K
(c) Entropy change — S varieswith T" and P

18



oS oS
dsS = — dT — dP
5 <8T)P +<8P)T
(as) ¢ (as) (av) R
—_— = X and [ — = — | =— [
or), T oP ) . or), - P

c R
dS = 24T — =dP
s T P

For the gasremaining intank | dS; = 0 asit is undergoing an adibatic reversible expansion.

For the gas ending up in tank 11
Ty Pry
AS:’)’I,[[ |:Cphl (j_'()) Rhl(PO >:|

nrr = 0.39 (per mole of gasinitial intank 1)

P, =10atm, T, = 300K

Trr = 384K
TL[[RT[[ nrr T[[
Pp=—— = 5
H Vv n T, atm

7 384 )

AS =5.05n1 52

LEVEL 4 PROBLEMS

\ Problem 4.1\

Thisisavery tricky question whichiswhy it isalonein Level 4.

First let’s determine the equilibrium conditions. Assume that the system has some how reached equilibirum with
final values Tlf , Plf , Vlf for compartment 1 and T2f , sz , V2f for compartment 2. We can ssk what criteria must there
variable satisfy for the system to be in equilibrium.

Well we know that for any reversible change around equilibrium
dU = dU, +dU; =0
i.e. U(V,.S) must beminimal at equilibrium, and
dS =dS; +dS; =0
i.e. S(U, S) must be maximal at equilibrium.
Since there is no heat flow between compartments and between the chamber and the environment (since all walls
are adiabatic)

sy = 0

S, = 0
So at equilibrium, the only reversible changes we can make are in the volume of the compartments, i.e.

dVy = —dV,
Then we can write (for areversible change

dU, = —Pldv, = +P{av,
dUy = —PJdV,
19



dU = dU1+ dU2 = (P{ — P)Ydvy =0
since this should hold for arbitrary dV5,
pf =pf
i.e. equilibrium is characterized by mechanical equilibrium.

NOTE: Since dS; = 0 and dS, = 0, the equilibrium condition that dU = 0 does not yield any information about
the final temperatures Tlf and T2f . This means that the final temperatures of this system depend on the path followed
by the system to attain equilibrium.

The question remains. can we obtain equilibrium from the initial state Ty = T, To, = T,, P1 # P>, and ny # no
by following areverible path?

The answer is: probably not.

One candidate reversible path is to allow the piston to very slow move until the equilibrium pressures are attained
(i.e. Plf = sz ). This path, however, cannot proceed reversible for the following reason:

Assume that is can proceed reversibly. Then an infinitesimal change in the volume of compartment 1 by dV; will
result in an increase of the internal energy of compartment one by
AUy = =P dV;
The change in internal energy of compartment 2 is
dUs = —PadVa = PadVy
But since both compartments are adiabatically sealed from the environment,
dU =0 = dU; = —dU,
or
—PdVy = —PadVy
or
P =P
But thisis not true except in the final equilibrium state. In the initial state P, # P, by assumption.

= Therefore the suggested path cannot proceed reversibly. The suggest path must be accompanied by dissipation
(through friction between the piston and the walls for example). This dissipation will be accompanied by a production
of heat. We cannot predict a-priori how much of that heat evolvesto compartment 1 or compartment 2 though.
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