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Abstract 

This represents the sum total of lecture material presented in 3.185, Transport Phenomena in Materials 
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very poorly, but does contain all of the equations and derivations presented in the course. 
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Chapter 1


Introduction


1.1 September 3, 2003 

Handouts: syllabus, ABET, Diffusion, PS1 due Monday 9/8. 
Circulate signup sheet: name, username, year, course 

•	 Introductions: me, Albert. 

•	 What is covered: review stuff on general overview. Lots of complexity: from single ODE to five 
fully­coupled nonlinear second­order PDEs in five field variables. 

•	 Intro to the general transport methodology: conservation and constitutive equations 

accumulation = in − out + generation	 (1.1) 

Discuss the “terms”, with a flying eraser.


Microscopic and macroscopic.


•	 Necessary for all classes of materials, ask how many are interested in each: 

–	 Polymers: synthesis, injection molding, membranes (Bo) 

–	 Bio: drug delivery, anisotropic diffusion, blood flow (cool) 

–	 Ceramics: powder synthesis, separation, drying, sintering 

–	 Electronic: crystal growth, CVD, diffusion 

–	 Metals: smelting, refining, casting, heat treatment 

• Why 3.185 is important: processing­(structure)­properties­performance. We do low­cost, high­quality 
processing, low environment overhead, which is one of the two important aspects of this triad/tetrahedron. 

Sponsors of our work care about two things: low­cost high­quality processes and high performance. 
They don’t care about structure. Andy Groves, chairman of Intel, could care less about the electronic 
structure of titanium silicide­titanium aluminide diffusion barriers in aluminum interconnects, he wants 
cheap high­quality processes that result in high performance. Closer to home, parents’ eyes glaze over 
at talk of “Kinetics of eta phase precipitation in nickel superalloys,” but not at “Avoiding catastrophic 
failure of jet engine turbine blades in service.” Structure provides an important way to model the 
relationship between processing and properties, without which a black box, not a science. 
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Mechanics 

•	 Discuss grading: HW points and collab, double­session tests, mixed final. 

•	 Get test conflict dates, aim for Weds. 10/15–17, 11/19–21. 

•	 Make sure everyone has a recitation.


Schedule office hours.
• 

•	 Discuss travel: three trips, none of which should impact 3.185. If one more, tradition of having previous 
TA give a lecture. 

Required math 

•	 Vector arithmetic (dot product, cross product, outer product) 

•	 Vector calculus (gradient, divergence, curl) 

•	 Solving homogeneous linear ordinary differential equations, e.g. 

y�� = k, or y�� − ky = 0	 (1.2) 

•	 What partial differential equations look like, e.g. 

�2C = 0	 (1.3) 

The error function and derivatives: • 

2 x 

e−ξ2
erf(x) dξ	 (1.4)= √

π 0 

2 x 2d d 
e−ξ2 2

erf(x) e−x (1.5)dξ = √
π 

= 
dx 
√

πdx 0 

•	 The substantial derivative: the time derivative in a moving frame. 

D ∂ 
Dt 

= 
∂t 

u · � (1.6) 

Kind of like moving vector x(t), y(t), z(t): 

dC 
dx 

∂C ∂C ∂x ∂C ∂y ∂C ∂z 
= + + + .	 (1.7)

∂t ∂x ∂t ∂y ∂t ∂z ∂t (x,y,z) 

Previous feedback 

•	 Prof. Powell is cool, lectures are great, double tests are neat! 

•	 This course spent way too much time on diffusion. Okay, will cut a bit shorter this time. But non­3.01s 
will be lost, need to see TA or me. 

•	 Too much busy algebra on problem sets. Okay, will cut quite a bit, some computer. 

•	 Problem sets should be due on Friday instead of Monday, for last­minute recitation help. Poll class, 
incl. PS1 Mon or Weds? 

•	 Textbook is awful. It covers things in the wrong order, and is hard to read. Changing to new textbook, 
better readings, but still wrong order. Also see Incropera and DeWitt, in Reading Room; old text there 
too. 
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•	 TLL: “muddiest part”, index cards for each lecture from Friday, started last year, need more. 

•	 Too much online. But taking it off would only hurt those without Bibles. Sorry, won’t do. 

•	 Prof. Powell lets “dumb” questions slow things down. No dumb questions. Very often correct mistakes 
or omissions, ten others have the same question. If anything, MIT juniors and seniors need to be much 
more vocal! (Last mid­term evaluation, dreadful lecture...) 
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Chapter 2


Diffusion


2.1	 September 5, 2003: 1­D Cartesian and Cylindrical Steady­
State 

TODO: 

• Check reading room to make sure texts are there. 

• Bring: cards, class list. 

• Check text to make sure chap 25 units are consistent with mine. 

Opener: Colleen’s facility with names... my advisee! 
Mechanics: 

• Diffusion handout typo: should be erfc(y) = 1–erf(y). 

Choose new recitation times! • 

Finalize test dates. • 

• Invite example processes. 

• Index cards for muddiest part. 

• Try names. 

Diffusion Stuff they’ve learned before, new twist. Steady state 1­D cartesian, cylindrical coordinates. 
Steady­state: accumulation=0. In today’s case, species isn’t generated or consumed inside the glass, so 

in–out=0. (Monday: generation by homogeneous chemical reaction.) 
1­D: concentration varies only in one direction. 
My style: start with a motivating example, introduce the physics along the way. When we’re done, we 

have the physics, and an example of how to use it. 
Yesterday: 3.185 is about low­cost high­quality processes. Here a process, not for material but for helium, 

maximize productivity a.k.a. throughput subject to process constraints. 
Example: helium diffusion through pyrex glass, enormously higher D than any other gas (25x hydro­

gen!). Some helium in natural gas, can flow through pyrex tubes to separate, 2mm OD 1mm ID. Generally 
diffusion­limited. Want to calculate the production rate, more important understand how works, because 
from understanding flows design recommendations. ASSUME diffusion­limited, so this is the slow­step, not 
adsorption/desorption etc. 

Simple solution: unroll to a plate, with Cin on one side (equilibrium with partial pressure in natural gas) 
and Cout on the other (pumped away into tanks), be sure to use thickness δ. We know how to do this: 
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Constitutive law: Fick’s first, gradient points up, diffusion goes down, proportionality constant 
D: 

∂C 
J� = −D�C, Jx = −D (2.1)

∂x 
Units of each term.

1­D: no difference in y­ or z­direction, so those partials are zero. When varies in only one direction

and not time, not partial but total dC/dx.

Conservation with no accumulation or generation: dJx/dx = 0, substitute to get


d dC 
D = 0, (2.2)

dx dx 

ASSUME constant D this is 
d2C 

= 0. (2.3)
dx2 

General solution in 1­D: 
C = Ax + B. (2.4) 

Boundary conditions (limited by diffusion): 

x = 0 C = Cin, x = δ C = Cout. (2.5)⇒ ⇒ 

Result: flux 
ΔC 

J = −DdC/dx = −D . (2.6)
δ 

2 gAt 500◦C, DHe−pyrex = 2 × 10−8 cm , for some steady gas/helium mixture Cin = 10−5 
cm3 ,s 

say Cout � 0. For δ = 0.5mm = 0.05cm, this gives 

g10−5 
cmJ = 2 × 10−8 cm2 

3 = 4 × 10−12 g 
. (2.7)

s 
· 

0.05cm cm2 s· 

Tube array with total length 10m=1000cm (e.g. 100 tubes each 10 cm long), R2 = OD/2 = 0.1cm, 
so throughput is 

J A = 2πR2LJ = 8 × 10−10π = 2.5 × 10−9 g 
(2.8)

s 
Or do we use R1? That would give 1.2 × 109 . How far off is the flux? A dilemma. 
Timescale: δ2 � Dt ⇒ steady state. Here t � δ2/D = 125000 seconds, about a day and a half. 

Design: what to do to improve throughput? 

• Smaller δ: possible breakage 

• Higher D: change glass, raise temperature 

• Higher ΔC: raise/lower temperature, change glass 

Okay, that was the braindead 1­D solution. What about the real cylinder? 

Cylindrical coordinates So, Cout at outside, Cin at inside, what to do between? Use R1 and R2 for 
inner, outer radii. Fick’s first, assume 1­D, so C is function of r only. 

dC 
Jr = −D (2.9)

dr 

Conservation: in at r + Δr, out at r, no gen or accum, area 2πrL: 

0 = [2πrLJr ]r − [2πrLJr ]r+Δr , (2.10) 
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divide by 2πL, Δr → 0: 

0 = − 
d 
dr 

[rJr ] (2.11) 

Plug in flux: � � 

0 = 
d 
dr 

rD 
dC 
dr 

. (2.12) 

Now solve: 

A� = rD 
dC 
dr 

(2.13) 

A� 

Dr 
= 

dC 
dr 

(2.14) 

C = A ln r + B (2.15) 

where A = A�/D. From BCs: 
C − Cin 

Cout − Cin 
= 

ln(r/R1) 
ln(R2/R1) 

(2.16) 

Check at R1 and R2, units. 
Flux= −DdC/dr: 

dC 
Jr = −D = −D

d 
Cin + (Cout − Cin) 

ln(r/R1) = D
Cin − Cout 1 

. (2.17)
dr dr ln(R2/R1) ln(R2/R1) r 

Important result: not flux, but flux times area. 

dC 
AJr = −2πrLD = 2πrLD

Cin − Cout 1 
. (2.18)

dr ln(R2/R1) r 

Note rs cancel, so AJr is constant for all r. Make sure units work. Cool.

Numbers, result: 1.8×10−9 . Between the 1­D estimates. Overestimated flux, at R2 is really 1.44 × 10−12 ,

twice that at R1, so R1 value is closer.

More important: cartesian gave wrong design criterion! Not minimize δ, but minimize R2/R1! Double

production by going from 2 to 

√
2 because ln(

√
2) = 1


2 ln(2), e.g. 3 mm OD with no change in thickness! 
Other design issues: helium on inside or outside? Inside means glass is in tension, outside compression. But 
if gas is dirty, inside is easier to clean. 
Note: on problem set 2, will derive this for a sphere for a drug delivery device. Pretty cool. 
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2.2	 September 8, 2003: Steady­State with Homogeneous Chemi­
cal Reaction 

Mechanics: 

•	 New recitations: R12, F2, both in 8­306. 

•	 Fri: very different lecture, ABET stuff. 

Names. 
Muddy stuff: 

•	 Recitations. :­) 

•	 Dislike cgs units. 

•	 Clearer writing and neater presentation. (Big chalk...) 

•	 Why both ways? One is simple but wrong, other is complex and right. 

•	 Flux in cylindrical coordinates. Give full gradient. (Next time.) 

• Integrating to get solution: d/dr(rdC/dr) = 0 ⇒ C = A� ln r + B. 

•	 General−→ particular solution in cylindrical coords. Start with general, plug in BCs: 

Cin 

Cout 

Cout − Cin 

A� 

Cin 

B 

C 

C − Cin 

C − Cin 

Cout − Cin 

C = A ln r + B 

= A� ln R1 + B 

= A� ln R2 + B 

= A�(ln R2 − ln R1) 
Cout − Cin = 
ln(R2/R1)

Cout − Cin
= ln R1 + B
ln(R2/R1) 

Cout − Cin = Cin − 
ln(R2/R1) 

ln R1 

Cout − Cin ln r + Cin −= 
ln(R2/R1)

Cout − Cin
= 
ln(R2/R1) 

ln(r/R1) 

ln(r/R1)= 
ln(R1/R2) 

(2.19) 

(2.20) 
(2.21) 
(2.22) 

(2.23) 

(2.24) 

(2.25) 

Cout − Cin 

ln(R2/R1) 
ln R1 (2.26) 

(2.27) 

(2.28) 

•	 Didn’t finish: timescale to steady­state τ ∼ L2/D, in this case 125,000 seconds, about a day and a 
half. Will explore this more rigorously on Friday. 

Summarize: illustrates 3.185 methodology 

•	 Problem statement: maximize throughput = flux× area 

•	 Conservation equation 

•	 Constitutive equation 

•	 Combine to give (partial) differential equation 
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• General solution with integration constants 

• Boundary conditions give values of integration constants 

• Use solution to get problem objective: flux×area 

• Design recommendation follows from solution 

Like p. 465 of W3R. 

Generation Homogeneous chemical reactions. RCC carbon fiber­reinforced graphite composite! Very

high­temperature, high­strength. Carbon fiber preform, model as a porous material, diffusion of acetylene

to the surfaces of the fibers, at high temp it decomposes and deposits graphite.

Problem: as it deposits, it seals off the entrances, non­constant diffusivity. Generation of acetylene G = −kC.

UNITS!

Set up problem in center, symmetry, sheet of material. 1­D equation:


d2C d2C
0 = D 

dx2
+ G = D 

dx2 
− kC (2.29) 

General solution, using polynomials eRx , R = ± k/D, so � � � � � � 
k k 

C = A exp x + B exp −x (2.30)
D D 

BCs: at x = ±L C,2 = C0, so A = B, � � � � � � �� � � � 
L k L k L k 

C0 = A exp + exp − 
2 D 

= A cosh (2.31)
2 D 2 D 

Result: � � � 

cosh x 
C 

k 
D 

= � � � (2.32)
C0 cosh k 

D 
L 
2 

D, or more generally, L2 

or VERY non­uniform, uniform if that number is small (thin sheet, slow reaction, fast diffusion), nonuniform 
if it’s large (thick sheet, fast reaction, slow diffusion). Makes sense. 

So, have process, want to double thickness with same uniformity, can’t change D much, how much change 
k? Drop by factor of 4. Problem: takes four times as long!! 

The real solution: blow acetylene through it! 

What does this look like? Pay attention to kL 
2 

k . Can either be sorta uniform, D 

10 



� � 

� � � � 

2.3 September 10, 2003: Unsteady­State Diffusion 

TODO: 

•	 Check reading room to make sure texts are there. 

•	 Bring: cards, class list. 

•	 Check W3R pages for this lecture. 

NAMES! 
Mechanics: 

•	 Get office hours together. 

•	 Pump the zephyr instance. 

• Fri: very different lecture, ABET stuff. 

Muddy stuff: 

•	 Cylindrical gradient (W3R appendices A­B, p. 695–700): 

∂C �C = r̂ + 
1 ∂C 

θ̂ + 
dC

z,	 (2.33)ˆ
∂r r ∂θ dz 

∂2C 1 ∂C 1 ∂2C ∂2C 
= + +	 (2.34)�2C 

∂r2 r ∂r r2 ∂θ2 
+ 

∂z2 
, or 

∂2C ∂2C1 1∂ ∂C 
(2.35)= r + 

r2 ∂θ2 
+ 

∂z2 
, or 

r ∂r ∂r 

(2.36) 

•	 During derivations, important points are obscured. “What we’ve learned” summaries help. Basi­
cally following outline mentioned before, on p. 465 of W3R. Also feel free to snooop around Athena 
directory... 

•	 How to draw exponentials in concentration profile? 

•	 Plotting hyperbolic trig functions—necessary? No. If needed, use calc/table. 

•	 Too quick jump from integ consts to carbon fiber material, missed lots. 

•	 Keep C2H2 conc constant for constant rate? Not quite, keep it uniform. 

•	 How to calculate C2H2 consumption rate? Use concentration (or partial pressure) and reaction con­
stant. But often don’t know reaction constant, need to try at various temperatures, or just do what 
we did—find something which works, and use this methodology to understand why and how to make 
work for new designs. 

• How do we get: 
dCdC 

d2Cx 
−dx dx x+Δxlim 

Δx→
+ G?	 (2.37)+ G = D 

0 
−D 

Δx dx2 

Derivative of the derivative is the second derivative? 

•	 Arrhenius plot: which part is diffusion­limited, which part reaction­limited? Can’t really compare 
because of different units. But can sort of make a plot of log(kL2/D) vs. 1/T , look at different 
parts. Want: low­temperature reaction­limited case, with fast diffusion to wipe out conc gradients. 
Diffusion­limited means it doesn’t diffuse in very far. 

Next Monday: reaction and diffusion in series, which dominates is more straightforward, can easily 
compare the different coefficient. 
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•	 How did k/DL/2 become kL2/D? What’s important for design: if two designs have the same kL2/D, 
then have the same k/DL/2, same uniformity. So use the simpler one to guide design decisions. Get 
into further with dimensional analysis next week. 

•	 Why no flux at x = 0? Because of symmetry: on left, flux goes right; on right, flux goes left; in middle, 
flux goes... nowhere! Symmetry, or zero­flux boundary condition, like PS2 #3. 

Unsteady Diffusion Last two times: stories to take home: increasing production rate of helium from 
natural gas, high­quality manufacturing of reinforced carbon­carbon for space shuttle wing, nose leading­
edge tiles. This time: math first, examples later, because three different solutions to the diffusion equation, 
examples can use one or more. 

Now accumulation != 0, rate also in mol/sec = V ∂C/∂t. Chapter 27 material. Resulting equation in 
1­D: 

∂C ∂2C 
= D + G.	 (2.38)

∂t ∂x2 

Physical intuition: concentration curvature is either due to generation, or leads to time evolution, or both. 
Upward curvature means neighbors diffuse in, either G negative or C increases; downward means diffuse out, 
either G positive or C decreases. 

Today focus on zero­generation solutions which you’ve seen before, to be used in this class (book derives 
them using Laplace transforms...): 

Error function: • 

x 
C = Aerf(c) + B,	 (2.39)

2
√

Dt 
∂C x x2 

∂t 
= −

2
√

πDt3 
exp −

4DT 
,	 (2.40) 

2∂C 2 1 x

∂x 
= √

π 2
√

Dt 
exp −

4DT 
,	 (2.41) 

2∂2C 1 2x x
= exp

∂x2 
−√

πDt 4Dt 
−

4DT	
(2.42) 

2x x
= −

2
√

πD3t3 
exp −

4DT 
.	 (2.43) 

So this satisfies equation 2.38. 

What it looks like: graph erf, erfc; discuss constant C BC x = 0 C = C0, uniform C IC t = 0⇒	 ⇒
C = Ci. Results: 

x 
Ci > Cs ⇒ C = Cs + (Ci − Cs)erf 

2
√

Dt	
(2.44) 

x 
Cs > Ci ⇒ C = Ci + (Cs − Ci)erfc 

2
√

Dt	
(2.45) 

Semi­infinite. But what if your part is not semi­infinite, but thickness L? (Not many parts are semi­
Linfinite...) Since erf(2)=0.995 and erfc(2)=0.005, we can approximate ∞ � 2, if 

2
√

Dt 
> 2, then erf is 

about 1 and erfc about 0, can consider semi­infinite. Solve for t: 

L2 

t < 
16D 

⇒ semi − infinite. (2.46) 

(Recall t > L2/D ⇒ steady­state...) 
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• “Shrinking Gaussian”: 

Aδ x2 

C = exp − 
4Dt 

+ B (2.47)√
πDt 

∂C 
= ... (2.48)

∂t 

Graph: initial layer of height A + B in background of B, spreads out. Note: not valid for short times, 
only for 

δ2 

2
√

Dt > δ t > 
4D

. (2.49)⇒ 

Note also (semi­)infinite, like erf valid for t < L2/16D. Note one­sided, two­sided; either way, BC at 
x = 0 ⇒ ∂C/∂x = 0. 

Not necessarily square initial condition! Can even start with erf, drive in to shr Gaussian. 
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2.4 September 12, 2003: 9/11 remembered, ABET 

TODO: Bring ABET handout! 
Schedule office hours. 

September 11. The day meant a lot of things to a lot of people. Yesterday the occasion was commemorated 
in a number of ways, here in Boston, in my hometown of New York City, and around the country and the 
world. I can’t hope to be as profound as some of the speakers at those services, but can talk about a few 
things it meant to me personally, in particular as I have reflected on my decision to become an engineer, 
and my purpose in the profession. Perhaps some of it will resonate with one or two of you; I invite your 
comments or questions, and we’ll take as long for this as we have to. 

I’d like to start nine days before the tragedy, when I was in New York for my sister­in­law’s wedding. My 
wife’s parents live in Brooklyn, which is where the ceremony was held, but we were staying with her aunt 
and uncle in Long Island. At least twice a day in the few days beforehand, we drove the Belt Parkway and 
Brooklyn­Queens Expressway, wrapping around Brooklyn, passing under the Verazzano bridge and entering 
New York Harbor, with the view of the Statue of Liberty and the majestic buildings rising ahead, the skyline 
dominated, of course, by the World Trade Center. 

During those drives, I recalled the experience of my High School French teacher Mr. Schwartzbart, an 
Austrian Jew who survived World War II in a rural Belgian boys’ camp which, unknown to him at the 
time, was made up entirely of Jewish boys, and in fact, was set up to keep them safe throughout the Nazi 
occupation. He described the terror he felt under the occupation, and then the arrival of the American 
soldiers, “All of them giants,” he said, then pointed to me, “like Adam,” they had come to set the continent 
free. 

And he described the journey to America as a young teenager, a transforming experience. Most amazing 
was the entry of his ship carrying scores of poor immigrants like himself into New York Harbor, this impossibly 
enormous bridge which just got bigger and bigger as they approached (the Verazzano was the longest span 
in the world for about 50 years), the tranquility of the harbor within, with the great buildings visible 
ahead including the Empire State, and the Statue of Liberty to his left as they steamed toward Ellis Island 
(the World Trade Center’s construction was still 20 years away). There was an awe­inspiring sense of the 
magnitude of this great nation of impossible size which had overwhelmed some of the greatest evil the world 
had ever known, and his heart swelled with joy at the thought that there was such power on the side of 
liberty. 

These days in is fashionable to reflexively cringe at the identification of this country with freedom, 
and this teacher in particular very frequently commented cynically on the deficiencies in American culture 
and education. Having come to know this side of him, when we asked why he came to this country, Mr. 
Schwartzbart’s reply surprised us: “The land of the free and the home of the brave.” Then after a pause, 
“It really is true.” His personal experience of this gave great weight to these words. 

During these drives along the Belt Parkway, my thoughts also turned toward the fragility of the grand 
edifices, and in particular to the 1993 bombing of the underground parking lot of one of the Twin Towers. 
Fortunately the towers withstood that attempt to destroy them, but there would surely be more attempts, 
and no amount of devastation was too horrible for the perpetrators to dream up. Should anything happen, I 
was grateful for the opportunity to see this beauty, and even to feel a small piece of what Paul Schwartzbart 
had felt some fifty years earlier. I thought of how fortunate is his generation which came through the 
Depression, fought that terrible war, and lived to see the nation preside over such a long and prosperous 
peacetime as the world had perhaps never before known. 

So you can imagine my shock when just nine days later, as I sat in my office, my wife called from home 
to say that while watching CNN, they announced that a plane had crashed into the World Trade Center. 
Well, I thought, about 60 years ago a small plane hit the Empire State building, I’m sure there was a lot 
of damage and many people killed, but the rest of the building should be fine. Just a few minutes later 
she called again to tell me about the second plane, and suddenly I was afraid. Then the Pentagon, and the 
missing plane in Pennsylvania. My thoughts turned to the Mid­East, and this administration’s policy of 
deliberate neglect in the Israeli­Palestinian peace process. Then the last call, one tower had collapsed. With 
her voice choking from the tears, she described its fall as “like a house of cards,” and could say little more. 
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Immediately, I logged out, got on my bike, and pedaled home as fast as I could. 
I’m sure each of us can tell a story about where we were when it happened. Being from New York, I was 

immediately concerned for friends and family. My wife’s grandmother went to the roof of her building in 
Queens, from where she saw the second plane hit the south tower, and that tower’s collapse. I had shared 
this view every day growing up as I rode the Roosevelt Island tramway to school and saw these buildings 
which seemed as permanent as mountains. My wife’s best friend in College, who lives in the Prospect Heights 
section of Brooklyn and works in the southern tip of Manhattan, noticed people in his neighborhood looking 
up and saw some smoke, but rushed into the subway as he was late for work; the packed subway stopped 
after it left Brooklyn and waited in the tunnel for about 20 minutes before it turned back and he got out 
and learned what had happened. My Elementary School best friend worked in the 17th floor of Tower 1, 
and had a bad back which would have made it painful and difficult to get out—if he hadn’t been home sick 
that day. 

Then there was my father’s friend whom I know well and whose business had just finished moving into 
the 89th floor of Tower 1. His staff had been told not to come in that morning until 10 AM, because their 
carpets, freshly washed during the 1­7 AM shift, would need to finish drying. As he drove north on the New 
Jersey Turnpike, he saw the first plane crash right through the windows of his new office, then took the next 
exit and went right back to his daughter’s kindergarten class. 

The previous Spring and Summer I had a course 6 UROP student in my group. His brother worked 
above the 90th floor of Tower 2, and on the first and second day afterward without a word to anyone in his 
family, my student grew panicked, then desparate, then increasingly hopeless. His brother finally called to 
say that a friend had literally dragged him from the office after the first plane hit, and they ran out of the 
building together just as the second plane smashed into it. He described bits of the hell that was the area 
around him, but at the time had no other thought than to get away, go home and lie down in shock, not 
even thinking about his relatives who were trying to reach him. My student described the moment when 
they connected as one of the happiest of his life. 

Another friend was not so fortunate. Her father worked in an upper floor of Tower 2, and was one of 
just two in his company who didn’t make it out. To make matters worse, she was trapped in L.A. because 
of grounded planes, unable to get back and try to locate him, so day upon day she was not only uncertain 
and hurting but frustrated at being far from anyone who could help her. She is still grieving, as it’s hard to 
accept that she lost the closest person to her in the world because a handful of maniacs decided to crash a 
plane into his building. 

There are of course tens of thousands more stories like these, so many people were affected directly or 
knew someone who was. But even if you were not so directly involved, if you’re like me, the tragedy didn’t 
end on that day, but played out over and over again in your mind. I can’t count how many mornings in the 
ensuing months I woke up at 3 AM thinking about the towers’ collapse, feeling hurt, afraid, angry, and much 
as I hate to admit it, somewhat vindictive as we learned of the total destruction of the Al Queda camps and 
cave complexes in Afghanistan. 

Then thoughts turned to my own life. What can I do, what’s my role in the world, how can I help? 
I turned to the motivations I had for entering science and engineering, and materials science in particular, 

which I came up with in High School. Motivations for studying these things vary greatly, from interest in 
the subject matter, elegance of the equations, beauty of nature etc., to being able to earn a stable income 
and support a household, or perhaps a large income, to serving society in some way. My own motivations 
fell somewhat in the first category, but if I had followed that alone I would have been 6­3 (computer science); 
it was the last of these categories, serving society, which steered me into Materials Science. 

As a high school student, I verbalized this service as follows. As a scientist or engineer, I would be helping 
to solve the world’s little problems, which I listed as: 

•	 Agriculture, to feed a growing planet. 

•	 Medicine, allowing people to lead longer, healthier lives. 

•	 Transportation and communications, to bring people together and lessen the chances of conflict. For 
example, much of the reason war between France and Germany today is unthinkable is because there 
are so many more personal cross­border relationships now than in 1940 or 1914, it’s very difficult for a 
propagandist to castigate an entire people as “the enemy” and it’s becoming more difficult every year. 
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•	 Human interactions with the environment, for sustainable living. 

•	 A recent addition, information access, with implications for democracy, as the biggest enemy of an 
authoritarian state is the truth. 

All of these are important in themselves, but even more important, if we do our jobs well and make a 
difference in these areas, we help the artists, politicians, economists, philosophers and theologians to solve 
the big problems, which I would list as: 

•	 World peace. 

•	 Averting famines, and their relief. Almost all famines can be avoided without resort to international 
aid, and are the result of poor resource management or hoarding. 

•	 Real public health, made available to those who need it around the world. 

•	 Justice, including somewhat equitable economic distribution. 

•	 Truth in journalism and history. 

•	 Human happiness and fulfillment. 

•	 Purpose and meaning for our lives. 

•	 Artistic expression of emotions, of values, of that purpose and meaning. 

•	 Last year Ross Benson added: Tolerance of differences. 

An important consequence of this understanding of “little problems” and “big problems” is that being a 
scientist or engineer requires a lot of faith, faith that our knowledge and our inventions will be used wisely, 
for good and not for evil. The more “sciencey” our contributions, the more faith is necessary, with the 
ultimate example perhaps being nuclear science, which can be used to produce lots of cheap power or cure 
diseases, or destroy entire cities in an instant. If we work on weapons, they can of course be used for defense 
or for aggression. 

But even if we’re not working on nuclear science or weaponry, one of the lessons of September 11 for me 
is that no matter how careful we are to focus on purely non­military technologies, this tragedy showed that 
even a civilian jetliner—built to bring people together—can be abused by people with sufficient hatred as a 
weapon of mass destruction. This is truly frightening for us, and requires us to have that much more faith 
in the people, institutions and systems surrounding the technology in whose development we participate. 

So what should we do? Shall we abandon technology altogether and go back to rubbing sticks together? 
Perhaps we should join the peace corps? For some of us that will be the answer, but I think there’s a lot 
more that can be done with the little problems that can help to make a real impact on the big ones. So how 
can we put ourselves in positions to do as much good as possible? 

I can think of a few ways, but at your age and even at mine, perhaps the most important is to take a 
step back and examine what we’re doing and why. I have an advisee taking this class now who took off all 
of last Spring for that very purpose, and ended up returning to MIT (and in fact to Materials Science) that 
much more focused than the previous December for the experience. Of course, you don’t have to take off a 
semester to do this, there are very good ways to do some of this right here. 

First, the HASS and HASS­D subjects present outstanding opportunities for this kind of exploration. 
MIT is no longer just about training technology leaders, but also about training world leaders who know 
about technology, and this school has put enormous resources into building world class departments in the 
Humanities, Arts and Social Sciences. For example, I’ve heard tremendous things about our Anthropology 
department from a variety of external sources, and even within our department we offer a HASS subject 
called Materials in the Human Experience (3.094) every Spring. 

Second, I’ve made a point of suggesting to all of my advisees that they get to know the MISTI programs 
(I think that stands for MIT Internships in Science, Technology and Industry), which do an outstanding job 
not just of sending students to companies, universities and government labs in foreign countries, but also 
preparing them for the trip, even culturally and psychologically. 
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Third, develop a habit of using your wealth to support organizations and causes which effectively promote 
what you view as positive values. You may not have much now, but you will later, and getting into this habit 
is not hard; furthermore, membership in many of these organizations requires a contribution of as little as 
$30. If you like I can discuss offline some of the organizations I’ve given to since my undergraduate years, 
one even since high school. 

Fourth, look for opportunities to participate in the process of improving lives yourselves. Whether 
tutoring or mentoring, or working in a social justice organization, or writing to Congress, participating 
in society in a meaningful way is important to making it all work, and I believe important to improving 
ourselves too. Believe it or not, time is actually one resource which you will not have more of later in life 
than you have now, particularly if children become part of your life. 

Fifth and perhaps most importantly, get to know your fellow students. This buzzword is repeated over 
and over again, but it’s worth repeating yet again: because MIT attracts the best and brightest from all over 
the world, the diversity of the students on this campus is truly extraordinary, it’s almost certainly broader 
and deeper than anything you’ve experienced before college, and almost certainly broader and deeper than 
anything you will ever experience later in life. That goes for Cambridge as well, and many other universities, 
though much less so on the graduate level and beyond. And by getting to know your colleagues, I don’t just 
mean hanging out and eating pizza, nor even getting to know what spices they use to cook lamb, though 
food is of course an important part of social interaction. I’d encourage you to learn something about your 
friends’ lives, their families, their values—and be willing to discuss these aspects of yourselves too. 

And given its importance, I’d encourage you to learn something about your friends’ faith. Human 
institutions, organizations, systems and even nations are terrific, but never perfect, as we learned in a 
powerful way on September 11. Participating in and strengthening them is an important and honorable 
activity, but I believe that placing all of our hope on them is not viable in the long term. At some point 
they’re going to let us down, as this country has in some ways let down my French teacher Mr. Schwartzbart. 
Furthermore, evidence abounds for forces at work in the universe beyond those of physics, and even grows 
with the increase of human knowledge about this universe; perhaps the most significant example is the 
Anthropic Principle in Cosmology, which some of you may have heard of and I’d be happy to discuss offline. 

That concludes what I said last year: the tragedy reminds us that our work here is very important, but 
must be viewed in context, and done with faith that it will be used for the broad purposes for which we 
intend it. Since last year, time has passed and some of the emotions have subsided just a bit, also several 
important things have happened, or have not happened, causing my own feelings about this to be somewhat 
more complicated. 

For one thing, the message from Washington continues to urge us to live out lives as if nothing had 
happened, because if we changed anything, we’d be giving the terrorists what they want. But this is 
foolishness, important things have changed, and as citizens there are things we can do on a daily basis to 
improve our country’s security, and the silence from Washington has been deafening. 

A few months ago I saw a book provocatively titled, “When you ride alone, you ride with bin Laden.” 
The cover art was derived from a World War II poster, “When you ride alone, you ride with Hitler,” whose 
point was that the practices of avoiding driving, carpooling, and using public transportation save gasoline 
needed for the war effort. In that vein, an important thing which has not happened is that there has been no 
effort whatsoever on a national level to reduce our dependence on imported oil, which has been a huge factor 
in our problems in the Middle East. In fact, we’ve seen the opposite in this administration’s rollback in fuel 
economy standards, and heard talk about the costs to the auto manufacturers and consumers of requiring 
increases in efficiency, with no mention whatsoever of the multitude of costs of continuing to burn fossil fuels 
as extravegantly as we like. 

Another thing which has changed my view of the world was the war in Iraq. For months, the administra­
tion hyped any evidence at all for Iraqi connections to Al Qaeda and possession or development of weapons 
of mass destruction. Then inspections were allowed (to be fair, largely due to U.S. pressure, and no thanks 
to the posturing of certain countries like France), and one­by­one the inspections eliminated every piece of 
purported WMD evidence save the rumor about uranium purchase from Niger. And so with that one rumor 
as justification, we sent an invasion force to Kuwait, and used technological superiority to destroy the Iraqi 
army in about four weeks. 

I believe that the war was wrong for a number of reasons. First, as mentioned, it was completely 
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unjustified. There was no correlation to terrorism, none to weapons of mass destruction, and there are a 
dozen dictators around the world whose human rights violations could similarly motivate action. If violation 
of U.N. resolutions was the motive, then it’s up to the U.N. to act. 

Second, this war was an extremely imprudent waste of resources. It is unwise to spend a couple of hundred 
billion dollars on a flimsily­justified war in a time of record deficits, and even more imprudent to tie down 
fifteen of the U.S. Army’s thirty­three combat brigades in that occupation during a time of multiple threats 
from WMD in North Korea and Iran, to shaky stability in Afghanistan, to low­level al Qaeda activity from 
Indonesia to Somalia. And most significant is the loss of hundreds of American and thousands of Iraqi lives, 
very nearly including that of my own brother, a Captain in the U.S. Army third infantry division’s second 
brigade, whose unit was hit by an Iraqi missile just after their capture of downtown Baghdad. Like my 
Course 6 UROP student two years ago, the days between learning of the attack and confirming my brother’s 
safety were some of the longest of my life. I cannot imagine the terror and grief of hundreds of thousands of 
loved ones of Iraqi soldiers who did not know for weeks or months whether their sons, brothers, husbands or 
fathers were dead or alive, nor the pain of those whose worst fears were in the end confirmed. 

Finally, the war has cost us diplomatically, and will continue to cost us potentially for many genera­
tions. The arrogance with which the administration shrugged off overwhelming international opposition was 
shocking, prticularly as it involved three of the five Security Council permanent members, some of our most 
important allies, and both of our neighbors. Even more shocking was the pathetically childish pettiness with 
which the administration spoke of “punishing” the opponents to the war—particularly the French—and then 
turned around to ask them to contribute money and troops to the occupation and reconstruction to reduce 
the resource burden on us. But in the long term, the most diplomatically destructive aspect of the war is 
the precedent it sets for accusing a nation of violations of one sort or another, putting aside international 
outcry for restraint, and using military superiority to crush the weaker victim. This precedent can easily 
be abused by, say, Turkey, Syria, Egypt, Jordan and Saudi Arabia against Israel, North Korea against the 
South, Russia against the former Soviet Republics, China against Taiwan—any nation with a fight to pick 
can say, “But of course it’s been done before, by the Land of the Free and Home of the Brave!” 

And so we are reminded of our duty as citizens to speak out about matters of importance to our country. 
And in particular, as scientists and engineers we have the duty to speak out with authority on certain issues 
such as the small cost of reducing energy consumption, and the enormous costs of not doing so. Most of 
all, in the changed world our need for faith is greater than ever, in our work as well as our outlook for the 
future. I welcome any comments, contributions, or questions. 

ABET Sheet Review See the ABET sheet. 

Unsteady Diffusion Continued Muddy stuff: 

•	 Symbol conventions: Ci is initial, C0 I use as surface and sometimes other things; Cs always surface 
concentration. 

•	 Physical meaning of graphs, interpretation of these things: coming soon. 

Exact criteria for each solution: will be summarized. • 

•	 Semi­infinite and erf validity. First, semi­infinite applies to one­sided erf and one­sided shrinking 
Gaussian. Fully infinite applies to two­sided both. Second, the criterion is derived from the error 
function: t < L2/16D ⇒ erf(x/2

√
Dt) > 0.995 and erfc is below 0.005. Same criterion for erf, erfc, 

shrinking Gaussian. 

•	 How do the M and top­hat initial conditions give the same equation? Over a long time, the details of 
the initial condition smooth out and become Gaussian. 

Continuing where we left off last time (did the erf and shrinking Gaussian): 

Fourier Series: • 

C = a exp(−b2Dt) sin(bx)(or cos), (2.50) 

18 



∂C 
∂t 

= −ab2D exp(−b2Dt) sin(bx), (2.51) 

∂C 
∂x 

= ab exp(−b2Dt) cos(bx), (2.52) 

∂2C 
∂x2 

= −ab2 exp(−b2Dt) sin(bx). (2.53) 

(2.54) 

Elegant and simple. Separation of variables: all of the t in one term, all of the x in the other f(t)g(x). 
[Eigenfunctions...] 

Graph: sine wave decays with time. 
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2.5 September 15, 2003: Wrapup unsteady, boundary conditions 

Muddy from last time: 

•	 Appreciate 9/11 reflections, not political opinions. Apologies to those affected, particularly language. 
Forms a strong part of 9/11 feelings, particularly as administration has done its best to tie them 
together. Uncomfortable with talking about one side and not the other. War must always be a last 
resort when other means e.g. negotiation have been tried. Defining objectives as narrowly as “regime 
change” with neither aggression nor clear and present danger (Bush and Clinton) is as misguided and 
wrong as extremists in the region who call for destrurction of a certain state “by any means necessary”. 
Open for last words... 

Continuing where we left off last time (did the erf and shrinking Gaussian): 

Fourier Series: • 

C = a exp(−b2Dt) sin(bx)(or cos), (2.55) 
∂C 

= −ab2D exp(−b2Dt) sin(bx),	 (2.56)
∂t 
∂C 

= ab exp(−b2Dt) cos(bx),	 (2.57)
∂x 

∂2C 
= −ab2 exp(−b2Dt) sin(bx). (2.58)

∂x2 

(2.59) 

Elegant and simple. Separation of variables: all of the t in one term, all of the x in the other f (t)g(x). 
[Eigenfunctions...] 

Graph: sine wave decays with time. Like a sinusoidal layered material being annealed in time. If 
period=2L, then b = π/L, get: � 

π2Dt 
� � �πx 

C = a exp − 
L2 

sin .	 (2.60)
L 

But what use is a sine wave? Note linearity of diffusion equation: any sum of solutions is also a 
solution. So we can add sine waves to get something more useful, use that. 

Fourier transform: express any initial condition as sum of sine waves. We’ll do one: square wave of 
period 2L for multilayer material annealing, each term has period 2L/n so bn = nπ/L: 

∞ � � � �� n2π2Dt nπx 
C = an exp − 

L2 
sin .	 (2.61)

L 
n=0 

The Fourier transform: 
4 

an = , n odd, 0, n even.	 (2.62)
nπ 

Illustrate different sine functions, how they add to a square wave. Result: 

∞� 4 
� 

n2π2Dt 
� � nπx � 

C = C0 + (Cmax − C0) exp	 . (2.63)
nπ 

− 
L2 

sin 
L 

n=1,n odd 

So we start with all these sine waves, then what happens? Higher­order terms shrink real fast. Graph 
amplitude vs. time, show n = 3 drops out nine times faster, n = 5 twenty­five times faster. Do it as 
t/τ , where τ = L2/π2D, so first term is exp(−t/τ ), second exp(−9t/τ ). One term remains real fast. 

Consider: t = L2/D... What is single­term max concentration at that time? 4/π × exp(−π2) = 
6.5 × 10−5, quite close to zero! 
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� � 

� � 

Other application: finite system with thickness L, uniform IC, constant C boundary conditions. Graph, 
show the “virtual” wave outside. Note that at short times, erf is easier; long times, one­term sine wave 
is easy. 

TA wanted to do 2­D and 3­D separation C = f(t)g(x)h(y)... 

Suppose something more like first lecture, section 2.1 (p. 6): initial flat, one side raised? Then linear 
plus Fourier series, with odd and even n; even so, at t = L2/D, first term, max conc is a tiny fraction 
of original. So, very close to steady­state! 

Which to use? Summary of criteria: 

•	 Error functions erf, erfc: 

–	 (Semi­)infinite 

–	 Uniform initial condition at t = 0 equal to boundary condition at x = ∞ 

–	 Constant concentration boundary condition at x = 0, infinite source/sink backing it up. 

Aδ 2 /4Dt + B:•	 Shrinking Gaussian √
πDt 

e−x 

–	 (Semi­)infinite 

–	 Fixed amount of material already in solid and diffusing into infinity 

–	 Gaussian “width” 2
√

Dt much larger than δ 

Fourier series: • 

–	 Infinite 1­D sine or square wave initial condition, or 

–	 Finite layer thickness L 

–	 Uniform initial condition at t = 0 

–	 Constant concentration boundary conditions at x = 0, x = L 

Examples: 

•	 Decarburizing steel sheet: initial concentration t = 0 ⇒ C = Ci, boundaries x = 0, L ⇒ C = Cs = 0 
due to oxidation. Start erf, go to Fourier. 

•	 Semiconductor devices: initial treatment with phosphorous­containing gas, initially no phosphorous so 
t = 0 CP = 0; fixed concentration at surface C = Ceq or Cs or C0. Erf. Then seal the top, no more ⇒
gas, drive­in diffusion gives shrinking Gaussian. 

•	 Galvanizing steel: thin layer of zinc on iron. Initial: x < δ C = C0, x > δ C = 0. Start erf 
(diffusion couple) but centered at x = δ 

⇒ ⇒ 

C = 
C0 erfc 

x− δ
.	 (2.64)

2 2
√

Dt 

This holds for as long as the zinc is semi­infinite, i.e. t < δ2/16D. For long times t > δ2/D, finite 
amount of zinc means shrinking Gaussian: 

C0δ x 
C = √

πDt 
exp − 

4Dt 
.	 (2.65) 
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2.6 September 17, 2003: Boundary conditions, layer growth 

Fun opener: Michael Dixon on calculus in physics in Dorchester. 
Muddy from last time: 

•	 Square wave: why is an zero for even n? That’s the Fourier transform; would throw off symmetry. 

•	 How erfs in infinite square wave IC? Like diffusion couple... 

•	 What is plotted on the graph of amplitude vs. time? 

4 •	 Steady Fourier: π exp(−π2) constant? No, wave with that amplitude at t = L2/D; for longer time 
asymptotically approaches C = Cav . 

•	 In galvanizing situation, why erf for small times? Isn’t it a finite amount of zinc? At very small times, 
can consider even the zinc as semi­infinite. Also, at small times t < δ2/D, shrinking Gaussian doesn’t 
work, goes to infinitely tall and thin. 

•	 What to use in example 3 between δ2/16D < t < δ2/D? Nothing covered here; perhaps another 
Fourier transform... 

•	 Write down initial conditions for examples... Added to lecture notes, in my home directory. 

Diffusion boundary conditions Types: 

Constant C: what’s that C? • 

•	 Constant flux: sealed means zero, sometimes ion beams, etc. (not often) 

•	 Flux vs. C, for chemical reaction or mass transfer coefficient. J = k(C − Ceq ) (note ChemEs’ k��...) 
Units: k in cm/s. Also mass transfer coefficient through fluid film: J = hD (C − Ceq ), where hD = δ/D. 

Example: gas diffusion in metal. Oxygen, nitrogen, hydrogen in metals: diffuses monoatomically, 
2O(m) ⇔ O2(g), equation: 

pO2 .	 (2.66)
2

Keq = [O]

So oxygen concentration at equilibrium is proportional to the square root of pressure. (Not the same for 
helium, argon, etc.) Then if flux is proportional to difference in concentrations, it’s proportional to square 
root of difference in partial pressures! 
Misconception 1: Equilibrium is NOT steady­state. Global equilibrium here would be a brick of SiO2. Local 
equilibrium gives concentrations at interface sometimes. Can be out of local equilibrium and at steady state 
too. 
Misconception 2: kinetic reaction rate order is NOT thermodynamic order. 

Layer growth Motivating example: silicon oxidation (example W3R pp. 487­489). Electronic components, 
this is the “gate oxide” in MOSFETs, draw p­n­p structure. Thickness must be tightly controlled for the 
FET to work—to switch at the right voltage. How to make the oxide? Expose it to air, and it just grows. 
Cool. Wet oxidation too: expose it to steam and it grows differently (slower?). How much does it grow, how 
long to leave it there? 

Go to the phase diagram, this one is pretty simple. Start with equilibrium. Many times, can use the 
phase diagram. Others, with impure phases (like air), or partial pressure or total pressure dependency, need 
activity to get equilibrium concentration at interface. 

Out of equilibrium, but interfaces at local equilibrium: diffusion­limited, explain the concept of pseudo­
steady­state. Growth is really slow because, although D might be high leading to steady­state, C3 − C1 is 
really small, leading to slow flux, really slow growth of the layer. Growth rate: 

2 moles O ρSiO2 dY 
JO = 

1 mole SiO2 MWSiO2 dt 
.	 (2.67) 
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Why? Proportional to JO , then it’s just a matter of working out units. 
No. JΔt is the amount over a certain amount of time, (C1 − C0)ΔY is the area on the graph needed to 

transform that much Si to SiO2. 
For equilibrium, set J = ΔC/Y , solve for Y : 

C3 − C1 

Y 
= 

2 moles O 
1 mole SiO2 

ρSiO2 

MSiO2 

dY 
dt 

(2.68) 

Y dY = 
1 mole SiO2 

2 moles O 
MSiO2 (C3 − C1) 

ρSiO2 

dt (2.69) 

Y 2 − Y 2 
0 

2 
= 

1 mole SiO2 

2 moles O 
MSiO2 (C3 − C1) 

ρSiO2 

(t − t0). (2.70) 

Parabolic growth. Plotted in text, p. 489. But the plot doesn’t quite work! 
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2.7 September 19, 2003: Layer Growth, Dimensional Analysis 

Mechanics etc. 

•	 Forgot last time: test 1 October 13? 

•	 Monday: no class, but I will be here for office hours 2:30­3:30 as usual; Albert? 

•	 Next Thurs 9/25: GE CEO Jeffrey Immelt at Bartos theater (downstairs Media Lab)... 

Muddy from last time: 

•	 Pseudo­steady­state of what? Diffusion: growth is slow, so conc profile reaches steady­state. 

ΔY •	 Why J0 = Δt (C1 − C0)? Explain: JOΔt is the amount of oxygen which the flux has fed through. 
(C1 − C0)ΔY is the amount of oxygen needed to transform ΔY worth of silicon into silicon dioxide. 

Why Y (t)? Is all diffusion­limited growth proportional to 
√

t?• 

Layer growth Motivating example: silicon oxidation (example W3R pp. 487­489). How much does it 
grow, how long to leave it there? 

Back to phase diagram: C0, C1 and C3 as three equilibrium concentrations at operating temperature. 
Out of equilibrium, but interfaces at local equilibrium: pseudo­steady­state. 

For equilibrium, set J = ΔC/Y , solve for Y : 

Y 2 − Y0
2 1 mole SiO2 MSiO2 (C3 − C1) (t − t0).=	 (2.71)

2 2 moles O ρSiO2 

Parabolic growth. Plotted in text, p. 489. But the plot doesn’t quite work! 
Next out of local equilibrium: say 1st order chemical reaction as the slow step. (Note: kinetic order vs. 

thermodynamic equilibrium exponents!) Then introduce C2 between C1 and C3, say the rate is proportional 
to C2 − C1, proportionality constant is the reaction rate coefficient which we call k. Very short times: 

J = k(C2 − C1) � k(C3 − C1), 

constant growth rate, linear film growth. 
Suppose C3 at oxide outer surface, C2 at back interface, C1 in equilibrium with silicon, reaction limit 

with constant k, J = k(C2 − C1). Want J(C3, C1). Solve all together: 

D	 kY 
J = k(C2 − C1) = (C3 − C2) 

C3 − C2 = 
Y 

⇒ 
C2 − C1 D 

D D 
k + C2 = kC1 + C3

Y Y 
D 
Y 
D 

kY 
D C1 + C3 

C2 = 
kC1 + 

k + 

C3 = 
kY 
D + 1Y 

Now get J : 
kC1 + 

k + 
Y 

Y

D 

D 

C3 − C1J = k 

D D 
Y 

Y
D 

C1C3 −YJ = k 
k + 

kY 
D 

k(C3 − C1) 
+ 1 

J = 
1+ k 

Y 
D 

C3 − C1 = 

Resistances in series. What dominates? Biot number! kY 
D Ratio of resistances. Small times and small Y 

mean small Biot, reaction­limited. Long times and large Y mean large Biot, diffusion­limited. 
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Dimensional analysis W3R pp. 140–142. Definitions: 

• Base units: m, s, mol 

• Derived units: cm/s, N, mol/cm3 

• Dimensions: L, t, CO 

Step 1 Postulate desired behavior as a function of the other variables, e.g. JO = f(C1 − C3, k, D, Y ), or 
f(JO, C1 − C3, k,D, Y ) = 0. The number of parameters is the number of dimensions n, in this case n = 5. 

This is done by intuition, and is very often the hardest step in the process. 

Step 2 Find the number of base units in the system r. Here: cm, s, mol, so r = 3. 

Step 3 Buckingham Pi theorem: number of dimensionless groups = n− r. 

Step 4 Choose r dimensionally­independent variables to eliminate, which will make the others dimension­
less. Here we’ll choose C1 − C3, D, and Y . 

Counterexample: can’t use k, D and Y because they’re not independent! Very often there are multiple 
“right answers” (fluid dynamics), choose the one which is most convenient. 

Step 5 Form the π groups from what’s left, which are unitless versions of the parameters. Dimensionless 
b cJ , called πJ , is J · [C3 − C1]a [D] [Y ] . Easy way: make a table with base units across the top, start with · · 

dimensions of J . Which of the eliminated units have moles? C3 − C1, so we can say a = −1 and moles are 
cancelled. Then which have seconds? D, so we can say b = −1 and seconds are cancelled. Now there’s just 
cm−1, so c = 1 and we’re done: 

JOY 
πJ = (C3 − C1)D

. 

Likewise, πk starts with k in m/s, so a = 0, b = −1, c = 1. Look, it’s the mass transfer Biot number! 

Step 6 Rewrite Step 1 in dimensionless terms, and we’re done: 

πJ = f(πk). 

What’s this? So simple? Can’t be. 
Let’s test: 

C3 − C1
JO = 

1 + Y 
k D 

YMult by (C3 −C1 )D to give 

JOY D D 1 
= 

1 
=

1 + kY − kY = 1 −
D D(C3 − C1)D + 1 + 1 1 + kY 
kY kY D 

So, 
1 

πJ = 1 − 
1 + πk 

DLimiting cases: large πk means πJ = 1 − 0 = 1, so JO = Y (C3 − C1). 
1 D 

Y (C3 − C1) kY For small πk, use 1+x � 1 − x near x = 0, so πJ = πk, JO = = k(C3 − C1). Excellent! D 
Purpose: simplify down to an easier expression, single graph. If couldn’t solve equation, single graph 

could be obtained from one experiment, generalized to any other reaction­diffusion problem of the same 
nature. Physical modeling, e.g. wind tunnel: get the dimensionless numbers right, every detail of flow is the 
same, dimensionless drag force is identical! 
This ends diffusion, next week heat conduction! 
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Chapter 3


Heat Conduction


3.1	 September 24, 2003: Wrap up dimensional analysis, start heat 
conduction 

Mechanics: 

•	 Handout: heat conduction equation solutions.


GE CEO tomorrow noon Bartos
• 

•	 Tests 1, 2 (10/10, 11/19) first part in 2­143. 

• Final Mon 12/15 1:30­4:30 “2­105”... 

Muddy stuff from last time: 

•	 How steady­state diffusion in oxide? 

How is C1 − C0 = 2 ρ ? C1 − C0 � C3 − C1 and C1 − C0 � C0, so for this purpose, C1 = C3 =molesM• 
oxygen/unit volume in SiO2 and C0 � 0. Molar density of SiO2 is ρ/M , molar density of oxygen is 
twice that. 

•	 Dimensional analysis was fast. Yes, learning the steps is easy, but “How to choose which variables to 
‘postulate desired behavior’ ?” Not easy, learn by example—we’ll do this many more times this term... 

•	 How to form dimensionless quantities? If counted i = n − r correctly, and chose dimensionally­
independent parameters to eliminate, then like simultaneous equations: units of J * (units of ΔC)a ... 
etc. Table as an easier way of doing that. Will do an example today with πk . 

•	 (Multiple people) How is πJ a function of πk ? Stay tuned for the dramatic conclusion of dimensional 
analysis... 

Dimensional Analysis Recap last time: 

1. Postulate desired behavior as a function of the other variables,	 e.g. JO = f(C1 − C3, k, D, Y ), or 
f(JO , C1 − C3, k, D, Y ) = 0. The number of parameters is n, in this case n = 5. 

2. Find the number of base units in the system r. Here: cm, s, mol, so r = 3. (Rank of the dimensional 
matrix...) 

3. Buckingham Pi theorem: number of dimensionless groups = n− r. 

4. Choose r dimensionally­independent variables to eliminate, which will make the others dimensionless. 
Here we’ll choose C1 − C3, D, and Y (NOT k, D and Y because they’re not independent!) 
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5. Form the π groups from what’s left, which are unitless versions of the parameters kept: 

JOY kY 
πJ = (C3 − C1)D

, πk = . 
D 

6. Rewrite Step 1 in dimensionless terms, and we’re done: πJ = f (πk). 

What’s this? So simple? Can’t be. Let’s test: 

C3 − C1
JO = 

1 + Y 
k D 

YMult by (C3 −C1 )D to give 

D DJOY 1 1 + kY − 
= 1 − 

1 
= = kY 

D D(C3 − C1)D + 1 + 1 1 + kY 
kY kY	 D 

So, 
1 

πJ = 1 − 
1 + πk 

DLimiting cases: large πk means πJ = 1 − 0 = 1, so JO = Y (C3 − C1). 
1 D 

Y (C3 − C1) kY For small πk, use 1+x � 1 − x near x = 0, so πJ = πk, JO = = k(C3 − C1). Excellent! D 
Purpose: simplify down to an easier expression, single graph. If couldn’t solve equation, single graph 

could be obtained from one experiment, generalized to any other reaction­diffusion problem of the same 
nature. Physical modeling, e.g. wind tunnel: get the dimensionless numbers right, every detail of flow is the 
same, dimensionless drag force is identical! 

Heat Conduction Conservation of math (in one ear, out the other). But seriously, conservation of thermal 
energy, for us enthalpy. Usual equation: 

accumulation = in − out + generation 

dH 
V = Aqin − Aqout + V q̇

dt 
Note on the accumulation term: when temperature changes, enthalpy changes according to the heat capacity, 
build up units from dT/dt (Kelvin/sec) adding cp and ρ to get to Joules/sec. 

What’s heat flux �q? Like diffusion goes down the conc gradient (actually, chem potential gradient), heat 
goes down the temperature gradient, proportionality constant k: 

q = −k�T.	 (3.1) 

Using that in­out and that accumulation term, derive the 1­D heat equation, same as diffusion in section 2.5 
(p.	 20). Simplify constant k, 1­D, so: 

∂T ∂2T 
ρcp = k + q̇.	 (3.2)

∂t ∂x2 

Define thermal diffusivity α = k/ρcp, with no gen reduces to diffusion equation, and give 1­D solutions: 

• 1­D steady­state: linear temperature. 

• Cylindrical steady­state: T = A ln r + B; with uniform generation: T = A ln r + B − Gr2/2 

• 1­D semi­infinite uniform initial, constant T	 boundary: 

xT − Ts 

T∞ − Ts 
= erf 

2
√

αt 
.	 (3.3) 
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• 1­D finite, uniform initial T , boundary constant T : Fourier series 

∞ � � � � n2π2αt nπx T − Ts = 
� 

an exp − 
L2 

sin (3.4)
Ti − Ts L 

n=1 

Even more on the handout, not responsible for any further than handout (and not asterisks either). 
Timescale to steady­state... any guesses? 

Optional: Why does heat go down the temp gradient, and diffusion down the chem potential gradient? 
Thermo: increasing S or decreasing G. Spinodal decomposition: negative ∂2G/∂C2, uphill diffusion! Fourier 
series in reverse... 
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3.2	 September 26, 2003: Heat conduction: boundary layers, mul­
tilayer wall 

Opener: Christine Ortiz talk on how inquisitive this class is... 
Mechanics: 

• PS3 due today, PS4 due Monday 10/6. 

• Last test 1 material next Wednesday, following math quiz in 2­143! 

• Tests 1, 2 (10/10, 11/19) first part in 2­143. 

• Final Mon 12/15 1:30­4:30 “2­105”... 

• Zeiss materials microscopy truck at Chapel Turnaround 10/2 9­4. 

Muddy from last time: 
1 •	 Why is πJ = πk at small πk ? Okay. For x � 1, x � 2 − x. So, for πk � 0, 1 + πk � 1, and


1

1 + πk 

� 2 − (1 + πk ) = 1 − πk 

1 
πJ = 1 − 

1 + πk 
� 1 − (1 − πk ) = πk 

Boundary conditions 

•	 Constant temperature.


−k ∂T
ˆ• Constant flux q� · n const, in 1­D qx = ∂x . 

• Heat transfer coefficient: qx = h(T − Tenv ). UNITS! 

On the last, think about a boundary layer of thickness δ in a fluid, model h as kf /δ. Then we can look 
at steady­state heat conduction through a plate, in particular the heat flux (T1 BC on bottom, h(T2 − Tenv ) 
BC on top): 

k 
q = (T1 − T2) = h(T2 − Tenv )

L

T1 − Tenv 
q = 

1 + L 
h k 

Awesome! Now you know W3R chapters 17 and 18—well, mostly. 

Multilayer wall With lots of layers, just add up the resistances... 

T0 − Tn 
q = 

1 + L1 + L2 1+ ... + Ln +h k1 k2 kn h2 

Same qx everywhere implies that layers with higher k have lower ∂T/∂x. 
Cylindrical is slightly different, uses flux­area product, based on log solution: 

2πL(T1 − T4)
Q = qA = 

11 ln R2 + 1 ln R3 +k1 R1 k2 R2 hR3 

Temperature trick: use Biot number equivalent: 

T0 − T2 resistances bet 2 and n 
= 

T2 − Tn resistances bet 0 and 2 
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3.3 September 29, 2003: Finally, the graphs! 

Fun opener: typeset homework and course evaluation handwriting... 
Mechanics: 

• PS4 due Monday 10/6. 

• Last test 1 material Wednesday, following math quiz in 2­143! 

• Tests 1, 2 (10/10, 11/19) first part in 2­143. 

• Final Mon 12/15 1:30­4:30 “2­105”... 

• Zeiss materials microscopy truck at Chapel Turnaround 10/2 9­4. 

Moddy from last time: 

• How did we get: 
T1 − Tfl 

qx = 
1 ? 

+ L 
h ks 

Yes, skipped some steps because the math here is the same as the math for diffusion. See notes of 9/19 
(section 2.7, page 24) for the derivation. 

• Temperature for large Biot, small Biot... 

• Albert: parallel composite wall... 

• Blackboard technique... 

Today’s motivating example: powder metallurgy by spray/gas atomization. Small droplets, very rapid 
cooling, rapid solidification microstructures, solute trapping. 

So, suppose initial condition T = Ti, outside fluid at Tfl. Boundary conditions: r = R ⇒ qr = h(T −Tfl). 
Want to know temperature distribution through time, or temperature history. This requires a Bessel function 
series!! How to do understand? 

• Dimensional analysis! 

• Qualitative description of behavior. 

• Graphs in text. 

• Simpified low Biot number behavior: Newtonian cooling.


Dimensional analysis:


1. Formulation: T − Tfl = f (t, r, R, Ti − Tfl, h, k, ρcp). n = 8 parameters! 

2. Base units: K, s, m, kg so m = 4. 

3. Buckingham pi: four dimensionless parameters. 

4. What to eliminate? Want to keep T − Tfl, t, r; choose h also. Eliminate R, Ti − Tfl, k, ρcp. 

5. πT is easy, as is πr. πh: eliminated by k and R. πt is funny, use k for seconds, ρcp for Joules, R for 
remaining meters. Result is the Fourier number, the ratio of t/tSS .

Note: could have used h to eliminate seconds, but result wouldn’t have been as cool: πt = ht/ρcpR.


6. Dimensionless equation: 
T − Tfl r αt hL 
Ti − Tfl 

= f 
R

,
R2 

, 
k 

The solution to this requires a Bessel function series!! No simple solution we can fit to, so qualitative. 
Now can graph πT vs. πr for various πt, different graphs for different πh. Large (> 100) reverts to the 

constant temperature boundary condition T = Tfl. 
Had to end there, continuing after the Math Quiz on Wednesday... 
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3.4	 October 1, 2003: Math Quiz, Graphs Wrapup, Newtonian 
Cooling 

Mechanics: 

• Zeiss Materials Microscopy Truck scheduled tomorrow: cancelled! 

Muddy stuff: 

•	 Mass transfer: diffusion/reaction­limited. Heat transfer: conduction/convection­limited. Mass transfer 
can also be convection­limited if we replace reaction constant k with mass transfer coefficient hD. 

Wrapup of The Graphs Now can graph πT vs. πr for various πt, different graphs for different πh. Large 
(> 100) reverts to the constant temperature boundary condition T = Tfl, small (< 0.1) we’ll get to in a 
moment, intermediate Biot number graphs. 

Newtonial cooling Small Biot number (< 0.1): temperture is roughly uniform. Let’s say it is uniform. 
Then we just have T (t), πT (πt, πh). Cool. 

Balance over the entire object: accumulation = ­out. 

dT 
V ρcp = −Aqr = Ah(T − Tfl)

dt 

Rearrange: 
dT Ah 

= dt 
T − Tfl 

− 
V ρcp 

Integrate, with initial condition Ti at t = 0: 

Aht
ln(T − Tfl) − ln(Ti − Tfl) = − 

V ρcp 

AhtT − Tfl	 = exp 
Ti − Tfl 

− 
V ρcp 

Plug in V /A: 

•	 Sphere: R/3 

•	 Cylinder: R/2 

• Plate: “R�� = L/2 

Had to end there... 

31 



�	 � 

� � 

� � 

3.5 October 3, 2003: Moving on... 

Mechanics: 

•	 Test 1 next Friday 2­143; handout, answer any questions. 

•	 Regular office hours; zephyrable (instance) most of next Tuesday. 

•	 PS4 due next Monday 10/6, correction: #2a in BTU/hr not kW. Corrected version on Stellar. 

•	 PS2#3c solution error: “at t = 1 second, x = 9.6 × 10−5cm, or just under one micron. At t = 4 
seconds, x = 1.92 × 10−4cm, just under two microns.” (was ×10−5...) Corrected version on Stellar. 

• 3B Symposium Wednesday November 5. 

Muddy from last time: 

•	 What’s this equation V ρcp∂T /∂t = −Aqr? We’ve had that before, it looked like V ∂H/∂t = Aqx|x −
Aqx|x+Δx + V q̇. I just skipped a step and went straight to accum=V ρcp∂T /∂t. Sorry about that. 

•	 What’s this bit about applying to different shapes? We left everything general, with volume and area, 
so whether a sphere, rod, plate, or crumpled up piece of paper, it just works. 

The book takes a different approach to the graphs in Appendix F: πT vs. πt for various πh, graphs at 
different πr. Useful for temperature histories like PS4#3 (but skip past the early graphs...), and also for 
TTT diagrams, like our metal spray. 

T	 αt x k 
Y	 = ∞ − T 

= f X = , n = , m = 2T∞ − T0 x1 x1 hx1 

Wrapup Newtonian cooling Last time we did accum = −− out for the whole shape, got to: 

AhtT − Tfl = exp 
Ti − Tfl 

−
V ρcp 

First, examine terms, timescale, larger/smaller h, rho cp, V /A. Plug in V /A: 

•	 Sphere: R/3 

•	 Cylinder: R/2 

•	 Plate: “R�� = L/2 

•	 Other shapes: varies... 

hVCan instead define alternate Biot and Fourier numbers: Bi� = kA , Fo� = αA2 
t, then: V 2 

T − Tfl = exp 
hV kA2 

t = exp (−Bi�Fo�)
Ti − Tfl 

−
kA ρcpV 2 

So, all set for PS4, test1? 

Thermal conductivity Diffusion is straightforward: atoms move, right? Well, not quite: gases in straight 
lines, liquid atoms move in chains, vacanices, interstitials, dislocations, etc. For heat, various mechanisms: 

Collisions • 

Phonons • 

•	 Photons—radiation, which is spontaneous emission from hot body 
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Electrons • 

On electrons, Wiedmann­Franz law: 

π Wohm 
kel = LσelT, L = 

3
(kB /e)2 = 2.45 × 10−8 

K2 

where e=electron charge. 
Metals: σel goes down with temperature. What about electrons is semiconductors? 
Liquids: water .615 20­100◦C, O2 3.4 × 10−4, H2 1.77 × 10−3 (both 300K) 
Influence of porosity and humidity/water absorption. Gases are very bad conductors, water not quite as 

bad but has very high specific heat! (PS4 #1d, water has four times cp of aluminum which is highest there.) 
WTypical conductivity values: 0.1 to 300 m·K . Porous→less, metals high, gases really small! 

Note: at conference, diamond­aluminum composite for microelectronics, 45 vol% diamond but isotropic 
conductivity of 550 W/mK! Nearly twice copper, squeeze­castable into heat sink parts. Q: why no diamond­
iron composite? 
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3.6 October 6, 2003: Finite Differences 

Mechanics: 

•	 Test 1 next Friday 2­143; handout, answer any questions. 

•	 Regular office hours; zephyrable (instance) tomorrow 9­12, 1­5. 

• Albert review session Thursday 7 PM in 8­302 (next door to recitation). 

Muddy from last time: 

•	 Why πT = exp(−π� πt
�) with no πr ? Because at low Biot number, T is uniform, not a function of r orh


πr .


Finite differences Very often no analytical solution to a system. (Or if there is one, it’s impossibly 
complex.) So, use a computer, make some approximations. 

•	 Discretize space: calculate temperature at a finite number of points on a grid (here 1­D). Choose xi, 
calculate Ti. For simplicity, we’ll choose evenly­spaced points, so xi+1 − xi = Δx. 

•	 Discretize time: calcluate temperature at a finite number of “timesteps” at times tn, so with both, we 
have Ti,n. For simplicity, Δt uniform. 

•	 Make some approximations about derivatives: 

∂T 
∂t 

Ti,n+1 − Ti,n� 
Δt xi ,tn+1/2 

∂T 
∂x 

Ti+1 − Ti � 
Δx xi+1/2 ,tn 

∂2T 
∂x2 

∂T ∂T − Ti−1,n − 2Ti,n + Ti+1,n 

(Δx)2 

∂x ∂x xi+1/2 ,tn xi−1/2 ,tn 

Δx xi ,tn 

So, let’s look at the energy equation, and substitute approximations: 

∂T ∂2T q̇
= α + 

∂x ∂x2 ρcp 

Ti,n+1 − Ti,n Ti−1,n − 2Ti,n + Ti+1,n q̇
= α	 +

Δt	 (Δx)2 ρcp 

Ti−1,n − 2Ti,n + Ti+1,n q̇
+

(Δx)2 

Δt 
Ti,n+1 = Ti,n + Δt = Ti,n + FoM (Ti−1,n − 2Ti,n + Ti+1,n q̇+ 

ρcp ρcp 

This is the “forward Euler” algorithm, a.k.a. “explicit” time stepping. Nice, efficient, easy to put in 
a spreadsheet. Problems: inaccurate because time and space derivatives not co­located, also unstable. 
Inaccuracy later. 

1Demonstrate instability for FoM > 2 : 

Δt 
Ti,n+1 = Ti,n(1 − 2FoM ) + 2FoM 

Ti−1,n + Ti+1,n + q̇
2 ρcp 

So, it’s like a weighted average between Ti,n and the average of the two (show graphically). When FoM > 2 , 
1the Ti,n part is negative, so we shoot past it! So, the criterion is that it must be ≤ 2 , larger timestep means 

less work, so use 1 .2 
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Exercise: cut length step in half, for same total time, how many more timesteps? How much more 
computational work? Spreadsheet area... 

To get rid of this instability, we have the “backward Euler” algorithm, a.k.a. “fully implicit” time 
stepping. 

Ti,n+1 − Ti,n Ti−1,n+1 − 2Ti,n+1 + Ti+1,n+1 q̇
= α +

Δt (Δx)2 ρcp 

Cool! But, requires simultaneous equation solution for the next timestep. But it is unconditionally stable: 
infinite timestep means we solve the steady­state problem. 

Solving the simultaneous equations: 

q̇Δt −FoM Ti−1,n+1 + (1 + 2FoM )Ti,n+1 − FoM Ti+1,n+1 = Ti,n + 
ρcp 

T0,n+1 = T0,BC 

−FoM T0,n+1 + (1 + 2FoM )T1,n+1 + −FoM T2,n+1 = T1,n + q̇1 Δt 
ρcp 

q̇1 Δt−FoM T1,n+1 + (1 + 2FoM )T2,n+1 + −FoM T3,n+1 = T2,n + ρcp

T4,n+1 = T3,BC ⎞⎛⎞⎛⎞⎛
T0,BC 1 T0 ⎜⎜⎜⎝ 

⎟⎟⎟⎠ 

T1,n + q̇1 Δt⎜⎜⎝ 
⎜⎜⎝ 

⎟⎟⎠ 
⎟⎟⎠−FoM (1 + 2FoM ) −FoM 

(1 + 2FoM ) 
T1 

T2 

ρcp= q̇1 Δt−FoM −FoM 

1 
T2,n + ρcp

T3 T3,BC 

Now just use 18.06 matrix techniques: Gaussian elimination, LU decomposition, eigenvalues, etc. 
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3.7 October 8, 2003: More Finite Differences 

Mechanics: 

•	 4 , std dev 4.85, 11 100s! Warm­up, next is the race. Graded math quizzes back. Avg 96 1 

•	 Test 1 next Friday 2­143; handout, answer any questions. 

Review session tomorrow 7 PM 8­302. • 

•	 I can have office hours Monday, but would much rather be available Wednesday 2:30­3:30. 

•	 PS4 solution error: Newtonian cooling eq has just one t! Also in 10/1 and 10/3 lecture notes; corrections 
in Stellar and on Athena respectively. 

Muddy from last time: 

•	 Top and bottom rows in RHS last time were wrong, should have been T0,BC and T3,BC . Sorry... 

•	 “How... theoretically interesting. 

“You said you were going to start each lecture with a ‘motivating factor’—a real example to tie things 
to so the lecture isn’t just so many symbols and numbers—where was today’s motivating factor? 

“I’m hoping to at least be able to see a problem being solved where all this is useful. Otherwise, this 
makes no sense, sorry.” 

Okay, two examples today on the laptop. 

Encourage to think of test as checkpoint, first evaluation (except Math quiz, but that doesn’t count). And 
remember, you can make it up in the second sitting. Will not be straightforward, won’t see PS problems, 
but will apply same techniques to new situations. You will have to think, but you can all do that, that’s 
why you’re here. 

Finite differences Last time: Forward Euler/explicit, and Backward Euler/implicit timestepping. But 
both of these are integrating in time using the value at previous or next timestep. Like rectangles in numerical 
integration. Graphically show error as proportional to Δt. To increase accuracy, use trapezoids, right? Then 
error is proportional to (Δt)2 . That works like: 

Ti,n+1 − Ti,n Ti−1,n − 2Ti,n + Ti+1,n + Ti−1,n+1 − 2Ti,n+1 + Ti+1,n+1 q̇i,n + q̇i,n+1 = α	 +
Δt	 2(Δx)2 2ρcp 

This is “semi­implicit”, or “Crank­Nicholson” time integration, also need to solve simultaneous equations. 
Error goes as Δt2 for Crank­Nicholson, Δt for explicit/implicit (forward/backward Euler), like trapezoid 

rule vs. simple rectangle Riemann integration. 
2­D: two second derivatives in x and y, Ti,j,n at xi, yj , tn; explicit form: 

Ti,n+1 − Ti,n Ti−1,j,n − 2Ti,j,n + Ti+1,j,n Ti,j−1,n − 2Ti,j,n + Ti,j+1,n= α	 +
Δt (Δx)2	 (Δy)2 

With Δx = Δy, FoM = αΔt/(Δx)2, we have: 

Ti,n+1 = (1 − 4FoM )Ti,j + 4FoM 
Ti−1,j,n + Ti+1,j,n + Ti,j−1,n + Ti,j+1,n 

4 

So the stability criterion is: 
21 Δx

Fom Δt ≤≤ 
4 
⇒ 

4α
. 

In 3­D: 
21 Δx

Fom Δt ≤≤ 
6 
⇒ 

6α
.


Laptop spreadsheet demos: iron conduction ps5.gnumeric, freezing water lecture1008.gnumeric.
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3.8 October 15, 2003: Moving Body 

Mechanics: 

•	 Test 1 a bit too long, which is average for me, but not good. Will aim for shorter next time. 

•	 Test typo: m, n switch in equation sheet graph descr. 

•	 Ambiguous wording in 4b: clarified on board, but take any self­consistent answer. 

•	 Misleading wording in one test question! 2d: strike “—that is, what’s a more realistic shape for this 
region”. 

•	 The graph: perhaps not big enough. Good news: after initial behavior, πt ∝ exp(−t) (works for Newt 
cooling always, n = 1 term of Fourier). So on log­linear graph, straight lines, can extrapolate. 

•	 New version on Stellar (minus the graph), will be used in retake. Sorry! 

•	 Office hours: Today 2:30­3:30. 

•	 SOFCs and energy today 12:15 Marlar Lounge (37­252), Ashley Predith, MIT. 

•	 Magnetic nanodots Monday 3­4 Chipman, Igor Roshchin, UCSD. 

Moving body Example: VAR of titanium alloys, nickel superalloys. Start, during operation. Nickel: 6­8 
kA, 17→20”; Ti around 30 kA, 30→36”. 

Competition: thermal diffusion up vs. drive down. Suggest steady­state, sketch T vs. z. 
Temperatures in ingot real complicated, flow, etc. But can analyze electrode now. Question: how much 

of the electrode is heated? What’s the temperature profile? 
Choose frame of reference of melt interface on the bottom of the electrode. Solid is moving with respect 

to frame of reference. Now conductive and convective heat fluxes: q�+ ρcpT�u (not really, but this is valid for 
the difference). 

In and out have motion component! Important thing: in­out. in = uxρcpT , out too. Result when goes 
to zero: 

∂
in − out = − (qx + ρcpTux)

∂x 
This example: ux, ρ, cp are all constant, so we end up with: 

∂T ∂2T ∂T 
ρcp = k 

∂x2 
− ρcpux 

∂x 
+ q̇

∂t 

Rearrange slightly for constant ρcpux, substitute qx = −k∂T/∂x: 

∂T ∂T ∂2T 
ρcp + ux = k + q̇

∂t ∂x ∂x2 

Divide by ρcp: 
∂T ∂T ∂2T q̇

+ ux = α + 
∂t ∂x ∂x2 ρcp 

Discuss terms: why proportional to ∂T/∂x, competing effects of positive ∂2T/∂x2 and negative −∂T/∂x. 
Graphical explanation. 

What introductory math concept does this remind us of? The substantial derivative! Rewrite: 

DT ∂2T q̇
= α + 

Dt ∂x2 ρcp 

Note that’s the time derivative in the frame of reference of the moving solid. Cool! 
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Steady­state, no generation: 
∂2T ∂T 

α 
∂x2 

− ux 
∂x 

= 0 

Simple solution using the characteristic polynomial, R = 0, ux/α. Result: 

uxx 
T = A + B exp 

α 

Fit to boundary conditions: x = 0 T = TM , x = ∞⇒ T = Ti so use erf­style: ⇒

uxxT − Ti = exp 
� 

TM − Ti α 

2
0.1 cm ∼ 5 cm = 1 cmLengthscale=α/ux. Graph, noting that ux is negative. Titanium α = s , ux , so min 12 s 

α/ux = 1.2cm, about 1/2 inch. So only the bottom few centimeters are heated at all, even at this low 
velocity! 

Heat flux into the bottom: 

uxx 
qx = −k

∂T 
= −k(Tm − Ti) 

ux exp = −ρcpux(Tm − Ti)
∂x α α 

Note ρcp(Tm −Ti) is the enthalpy per unit volume to heat metal to its melting point. Mult by ux for enthalpy 
per unit area to heat metal coming at a rate of ux, which is a cool result. 

Next time: heat flux required to melt... 
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3.9 October 17, 2003: Phase Change 

Ask Andy re retake... 
Mechanics: 

•	 New version on Stellar (minus the graph), will be used in retake. Sorry! 

•	 Test stats first time around: 62­86 within a std dev. But significant clustering, low 80s and low 60s. 

Problem Mean Std. Dev. Max 
1. 5 0 5 
2. 29.41 4.02 35 
3. 22.34 7.21 34 
4. 17.21 3.92 25 
Total 73.97 12.34 94 

•	 Yet another error: diffusion equation missing D! 

•	 Magnetic nanodots Monday 3­4 Chipman, Igor Roshchin, UCSD. (Also mention interesting talk on 
Wednesday.) 

GLOAT ABOUT YANKEES! • 
Muddy from last time: 

•	 Why H = ρcpT in quotes? Well, ΔH = ρcpΔT , for temperature change only. But H = ρcpT is not 
true, show by graph. 

•	 What is H · ux? That’s the convective flux, the transfer of heat due to motion of a substance. 

•	 Frames of reference: DT /Dt is the time rate of change for a particle moving with the solid (or later, 
fluid); ∂T/∂t is the time rate of change at a fixed point (in a certain frame). 

•	 What’s the significance of qx = −ρcpux(Tm − Ti)? Well, ρcpΔT is the heat per unit volume. How much 
heat to raise Ti from the initial temp to the melting point. Times ux gives the heat/area/time, the 
flux required to raise titanium coming in at that speed. Think of ux as meters/second, or as m3/m2 s.· 

Phase change Another important concept: heat generated/lost at interface due to phase change. If extend 
the graph beyond x = 0 into liquid, more flux from liquid into interface than from interface into solid. How 
much more? 

qx,l − qx,s = −ρΔHM ux 

Example: candle, MIT undergrad; “Build a man a fire...” 
Model of casting limited by conduction through metal, per Albert’s recitation; graphical representation 

on board. Analogy to diffusion phase change (silicon oxidation): H is like C, T is like chemical potential µ. 
Fast growth means proportional to undercooling (ask Albert), like reaction­limitation in oxidation. 

Evaporation/condensation Also for evaporation, heat flux from gas, plasma, radiation incl. laser (be­
low), electron beam, etc. Condensation releases heat at a similar rate. 

Evaporation into gas: boundary layer, J = hD (Cs − Cbulk ). 
Evaporation rate into a vacuum: Langmuir equation 

pv
J = √

2πMRT 

Here the units should work, go through. 
Equilibrium pure vapor pressure: Clausius­Clapeyron equation, one form: 

A
log10 pv = − 

T 
+ B + C log10 T (+DT ) 

Units: torr, conversion factor. If not pure, then mult by activity. Either way, multiply material flux J by 
ΔHvap for heat flux influence. 
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3.10 October 20, 2003: Radiation 

Mechanics: 

• Test stats first time around: 62­86 within a std dev. But significant clustering, low 80s and low 60s. 

Problem Mean before Std. Dev. Max 
1. 5 0 5 
2. 29.41 4.02 35 
3. 22.34 7.21 34 
4. 17.21 3.92 25 
Total 73.97 12.34 94 

• Magnetic nanodots today 3­4 Chipman, Igor Roshchin, UCSD. 

Evaporation cont’d: When to use dense gas, line­of­sight vacuum approxes? Mean free path λ: 
1 

λ = √
2πσ2n 

σ is collision diameter, n is number of molecules per unit volume, P/kB T (sketch molecules). Important 
thing is the Knudsen number, λ/L, given by: 

λ kT 
Kn = = 

L 
√

2πσ2P L 

so in P − T space, lines deliniate “line­of­sight” régime (Kn>1), “continuum” régime (Kn<0.01). 

Radiation! Def: spontaneous emission of photons from a hot body. Emission, absorption, reflection, 
transmission. Cosine distribution: hand­waving skin depth explanation. 

Happens throughout a body, but surface emission follows a cosine distribution: handwaving explanation 
of skin depth as a function of angle. 

Concept: black body, absorbs all incident radiation, theoretical construct with some practical application. 
Also emits maximum possible radiation. Handwaving explanation: zero reflection at the interface. 

Defs: e is power emitted per unit area, eb is power emitted by black body per unit area, eλ is power per 
unit wavelength per unit area, eb,λ is power by black body per unit wavelength per unit area. 

Emission spectrum of black body: 
2πhc2λ−5 

e 
eb,λ = ch 

kBλT − 1 
h is Planck’s constant, c is light speed, kB Boltzmann’s constant. Graph for different T . 

How to get eb? Integrate over all wavelengths. Fortunately, it’s quite simple: 
∞ 

eb = eb,λdλ = σT 4 

0 

The physicists must have jumped for joy when they saw that one. For our purposes, it puts radiation within 
reach of engineers. Okay, all done, never have to see that first equation again. 

Even better: 
2π5k4 W 

σ = B = 5.67 × 10−8 

15c2h3 m2 K4 · 
Note: fourth­power dependence on temperature means this is MUCH more important at high temperature 
than low temperature. 

New defs: emissivity �λ = eλ/eb,λ, the fraction of black body radiation which is emitted; absorptivity 
αλ = aλ/ab,λ. Cool result: �λ = αλ, always! Material property. Graph resulting emission spectrum. 

Grey body approximation: � = α = �λ = αλ = constant. Makes life a lot simpler for us engineers. 
Superpose grey spectra on previous graph. 

Resulting emission: e = �σT 4 . Pretty cool. Likewise average absorptivity α. 
Real materials: � = f (T ), α = f (incident spectrum). Example: global warming, CO2 absorbs in the 

infrared, admits sun in visible. 
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3.11 October 22, 2003: More Radiation 

Mechanics: 

CONGRATS TO ALBERT! • 

•	 Test stats first time around: 62­86 within a std dev. But significant clustering, low 80s and low 60s. 

Problem Mean before Std. Dev. Max Mean after Std. dev Max 
1. 5 0 5 5 0 5 
2. 29.41 4.02 35 34.66 0.86 35 
3. 22.34 7.21 34 33.83 1.49 35 
4. 17.21 3.92 25 24.59 1.02 25 
Total 73.97 12.34 94 98.07 2.36 100 

“A” I consider around 80/89, because of statistics. Did well, 20%; not so well, only 20%. 

•	 Subra on bionano cell mechanics next Monday 4PM 10­250. Recruiting... 

Muddy from last time: 

•	 Why is � a function of T ? Semiconductor example: silicon has band gap, absorbs some near infrared 
and in visible and higher energy (lower wavelength), very little in far infrared. So at low T , low �; at 
higher T (up to melting point), higher �. Note: can’t be heated by IR heat lamp. Also note: liquid 
silicon has zero band gap! 

Peak wavelength:

λmaxT = 2.9 × 10−3m · K


1000K, 2.9µm=2900 nm; sun at 5800K is at 500 nm (yellow)—need to be pretty hot to peak in the visible 
spectrum. 

Little table: 

Wavelength Total/average 
BB Emission eb = 

∞�eb,λdλeb,λ 0 
Actual emission e(= q) = 

0 
∞ 

eλdλeλ 

Emissivity �(T ) = e/eb�λ = eλ/eb,λ 

Absorptivity α(incident)αλ ≡ �λ 

Fortunately eb is quite simple: 
∞ 

eb = eb,λdλ = σT 4, σ = 5.67 × 10−8 W 
m2 K4 

0 · 

Grey approximation means we stick an average � in there. Note: fourth­power dependence on temperature 
means this is MUCH more important at high temperature than low temperature. 

Averaged properties: � = e/eb, α = a/incident. Note � will vary with temperature, α depends on 
wavelength of incident light. 

Radiation viewfactors So, the pointof radiative exchange: how much radiation emitted by surface 1 
reaches surface 2? Double integral: 

e1 cos θ1 cos θ2
Q12 =	 dA2dA1 

r2 
S1 S2 

A really ugly thing! 
Okay, but suppose A is at a uniform temperature, B also? Then can pull out eA, αB ; define F12: 

cos θ1 cos θ2
Q12 = e1 dAAdAB 

r2 
S1 S2 
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Q12 = e1A1F12 

F12 is only a function of the shape, not the size; is dimensionless. 
Viewfactor Algebra: two principles 

A1F12 = A2F21 

Prove from equal temperature. � 
nFji = 1 

i=1 

if they form an enclosure. Simple thing. With these two, can do complex stuff. Simple geom graphs on pp. 
396–398. Note: F11 = 0 if concave. 

For coaxial disks of same radius, graph F12 vs. d/r, values below.

Example: disk and cylinder section height d/4 to d/2 above, viewfactor for disks d/4 is 0.6, for d/2 is


A20.375. Derive F21 = 0.225 by enclosure arguments; F12 = A1 
F21 = F21 by this argument. 

Total exchange viewfactor: NOT COVERED THIS YEAR Reflection can be specular, diffuse. 
Here discuss diffuse. Suppose two grey bodies forming an enclosure, diffuse reflection at same cosine distri­
bution. 

Q12,net = eb1�1A1F12(1 − �2)A2F21(1 − �1)A1F12etc. − eb2�2A2etc. 

Simplifies to: 

Q12,net = 1−�1 

eb1 − eb2 
1 + 1−�2+A1 �1 A1 F12 A2 �2 

Funny thing: like a sum of resistances. Funnier stil: multiple surfaces forming an enclosure ⇒ resistance 
diagram! 

New concept: zero­flux surface, well­insulated, reflected+emitted�incident. In that case, no “current” 
through that resistor, can get the total from surface 1 to 2 bypassing surface R. Pretty cool! 

Total Exchange Viewfactor: F̄  
12, in this case 

1¯ A1F12 = A1F12 + 1 + 1 
A1 F1R A2 F2R 

Substitute that in instead of A1F12 in Q12,net equation above. 
Done with radiation, with heat transfer, on to fluids! 

42 



Chapter 4


Fluid Dynamics 

4.1 October 24, 2003: Intro, Newtonian Fluids 

TODO: look up Wiedmann­Franz, falling film in new textbook. 
Mechanics: 

•	 PS5: Get the spreadsheet from the Stellar site (URL on PS was for PMMA properties). 

•	 L expression may be off: calc’d to 7.9 × 10−9, not 2.45 × 10−8 . Maybe a missing π. 

•	 Subra on bionano cell mechanics next Monday 4PM 10­250. Recruiting... 

•	 Next Tues: MPC Materials Day, on Biomed Mat’ls Apps. Register: http://mpc­web.mit.edu/ 

Muddy from last time 

•	 First “rule” in viewfactor algebra: A1F12 = A2F21, doesn’t it depend on T ? No, because Fij is based 
only on geometry. 

•	 F12 for facing coaxial disks with radii r1 and r2 sample graph: F12 is decreasing with d/r1. 

Fluid Dynamics! Brief introduction to rich topic, of which people spend lifetimes studying one small 
part. You will likely be confused at the end of this lecture, come to “get it” over the next two or three. 

Categories: laminar, turbulent; tubes and channels; jets, wakes. Compressible, incompressible. 
Outcomes: flow rates (define), drag force (integral of normal stress), mixing. Later couple with diffusion 

and heat conduction for convective heat and mass transfer. 
Start: the 3.185 way. Momentum field, “momentum diffusion” tensor as shear stress. Show this using 

units: momentum per unit area per unit time: 

kg m kg 
=

N s = 
m2 s m · s2 m2 · 

Two parallel plates, fluid between, zero and constant velocity. x­momentum diffusing in z­direction, call 
it τzx, one component of 2nd­rank tensor. Some conservation of math: 

accumulation = in − out + generation 

Talking about momentum per unit time, kg
s2 , locally momentum per unit volume ρ�u. Here suppose uxm·

varies only in the z­direction, no τxx or τyx, no uy or uz. Three conservation equations for three components 
of momentum vector, here look at x­momentum: 

∂(ρux)
V = A · τzx τzx|z+Δz + V Fx· 

∂t 
|z − A · · 
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Do this balance on a thin layer between the plates: 

WxWzΔz
∂(ρux)

= WxWzτzx z − WxWzτzx z+Δz + WxWzΔzFx
∂t 

| |

Cancel WxWz and divide by Δz, let go to zero: 

∂(ρux)
= 

∂τzx + Fx
∂t 

− 
∂z 

What’s generation? Body force per unit volume, like gravity. Units: N/m3 (like τ has N/m2), e.g. ρg. 
What’s the constitutive equation for τzx? Newtonian fluid, proportional to velocity gradient: 

∂ux ∂uz
τzx = −µ + 

∂z ∂x 

This defines viscosity µ, which is the momentum diffusivity. Units: N · s/m2 or kg/m · s, Poiseuille. CGS 
units: g/cm · s, Poise = 0.1 Poiseuille. Water: .01 Poise = .001 Poiseuille. 

So, sub constitutive equation in the conservation equation, with uy = 0: 

∂(ρux)
= 

∂ ∂ux + Fx−µ
∂t 

− 
∂z ∂z 

With constant ρ and µ: 
∂ux ∂2ux

ρ = µ + Fx
∂t ∂z2 

It’s a diffusion equation! 
So at steady state, with a bottom plate at rest and a top plate in motion in the x­direction at velocity 

U , we have: a linear profile, ux = Az + B. 
Aaliyah tribute: innovative complex beats, rhythmic singing, great performing. Started at an early age, 

passing at age 21? 22? a couple of years ago in plane crash was a major music tragedy. 
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4.2 October 27: Simple Newtonian Flows 

Mechanics: 

•	 Aaliyah: okay, you might have heard of her, but didn’t expect from a Prof. MTV... 

•	 Wiedmann­Franz: new text doesn’t offer any help (p. 204, no constant). 

•	 Subra on bionano cell mechanics next Monday 4PM 10­250. Recruiting... 

• Tomorrow: MPC Materials Day, on Biomed Mat’ls Apps. Too late to register though :­( 

Muddy from last time: 

•	 Is the velocity in the x­direction, or the z­direction? x­direction, but it is quite confusing, τzx is 
flux of x­momentum in z­direction. Momentum is a vector, so we have three conservation equations: 
conservation of x­momentum, y­momentum, z­momentum. This vector field thing is a bit tricky, 
especially the vector gradient. 

•	 I left out: a Newtonian fluid exhibits linear stress­strain rate behavior, proportional. Lots of nonlinear 
fluids, non­Newtonian; we’ll get to later. 

Intro: may be confused after last time. This time do a couple more examples with confined flow, including 
one cylindrical, hopefully clear some things up. 

From last time: parallel plates, governing equation 

∂ux ∂2ux
ρ = µ + Fx

∂t ∂z2 

∂ux ∂2ux Fx = ν + 
∂t ∂z2 ρ 

We have the diffusion equation! ν is the momentum diffusivity, like the thermal diffusivity k/ρcp before it. 
kg/m·sNote: units of momentum diffusivity ν = µ/ρ: kg/m3 = m2/s! Kinematic (ν), dynamic (µ) viscosities. 

Note on graphics: velocities with arrows, flipping the graphs sideways to match orientation of the problem. 
Cases: 

•	 Steady­state, no generation, bottom velocity zero, top U :


U U

ux = z, τzx = −µ

L L 

Shear stress:	 � � 
∂ux ∂uz U 

τzx = −µ + = −µ
∂z ∂x z 

Thus the drag force is this times the area of the plate. 

•	 Unsteady, no generation, different velocities from t = 0. 

1 2 (L − z)2 

ux = Uerfc 
L − z 

, τzx = − 
2
√

νt 
√

π 
exp

2
√

νt	
− 

4νt 

•	 New: steady­state, generation, like book’s falling film in problem 4.15 of W3R, with θ the inclination 
angle off­normal so gx = g sin θ, z is the distance from the plane. The steady­state equation reduces 
to: 

∂2ux0 = µ + Fx
∂z2 

Fxz2 

ux = − 
2µ 

+ Az + B 
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BCs: zero velocity at bottom plate at z = 0, free surface with zero shear stress at z = L, Fx = ρgx = 
ρg sin θ, result: B=0, get 

ux = 
g sin θ 

(2Lz − z 2)
2ν


Shear stress: � �

∂ux ∂uz

τzx = −µ + = ρg sin θ(L − z)
∂z ∂x 

This is the weight of the fluid per unit area on top of this layer! 

Shear stress as the mechanism of momentum flux, each layer pushes on the layer next to it. Think of it as 
momentum diffusion, not stress, and you’ll get the sign right. 

Flow rate: Q, volume per unit time through a surface. If width of the falling film is W , then flow rate is: � � L � �
3W g sin θ Lz2 z

= 
W g sin θ L3 

Q = � ˆu · ndA = uxW dz = 
ν 2 

− 
6 ν 3S z=0 

Average velocity is Q/A, in this case Q/LW : 

Q g sin θL2 

uav = = ;
LW 3ν 

g sin θL2 

umax = ux|z=L = 
2ν

. 

So average velocity is 2/3 of maximum for falling film, channel flow, etc. 
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4.3 October 29: 1­D Laminar Newtonian Wrapup, Summary 

Mechanics: 

•	 Next Weds 11/5: 3B Symposium! 

Muddy from last time: 

•	 Erf solution: why 

ux = Uerfc 
L − z 

? 
2
√

νt 

As long as it’s semi­infinite, it’s an erf/erfc solution (uniform initial condition, constant velocity bound­
ary condition), so this works for t ≤ L2/16ν. For erfs, they can start at 0, or somewhere else (zinc 
diffusion couple), and go “forward” or “backward”. Graph the normal way. Also: 

ux = U 1 + erf 
z − L 

2
√

νt 

•	 Weight of fluid: consider layer of fluid from z to L, it has force in x­ and z­directions Fg = V ρg sin θ 
and − cos θ respectively. In x­direction, shear goes the other way: Fτ = −τzxA. So force balance for 
steady­state (no acceleration): 

V 
V ρg sin θ − Aτzx = 0 ⇒ τzx = ρg sin θ = (L − z)ρg sin θ. 

A 

In z­direction, this is balanced by pressure: 

P = Patm + ρg cos θ(L − z). 

Nice segue into pressure­driven flows. Suppose fluid in a cylinder, a pipe for example of length L and radius 
R, P1 on one end, P2 on other. Net force: (P1−P2)Axs, force per unit volume is (P1−P2)V/Axs = (P1−P2)/L. 
Can shrink to shorter length, at a given point, force per unit volume is ΔP/Δz → ∂P/∂z. This is the pressure 
generation term. 

So, flow in tube: uniform generation throughout (P1 − P2)/L (prove next week), diffusion out to r = R 
where velocity is zero. Could do momentum balance, but is same as diffusion or heat conduction, laminar 
Newtonian result: � � 

∂uz 1 ∂ ∂uz ∂P 
ρ = rµ + ρgz − . 

∂t r ∂r ∂r ∂z 

Here looking at steady­state, horizontal pipe, uniform generation means: 

Fz r
2 

uz = − 
4µ 

+ A ln r + B = 
P1 − P2 

r 2 + A ln r + B. − 
4µL 

Like reaction­diffusion in problem set 2 (PVC rod): non­infinite velocity at r = 0 means A = 0 (also 
symmetric), zero velocity at r = R means: 

P1 − P2 
uz = 

4µL 
(R2 − r 2). 

What’s the flow rate? � R � R 

Q = uz 2πrdr = 
P1 − P2 (R2 − r 2)2πrdr 

0 0 4µL � �R2 4π(P1 − P2) R2r r π(P1 − P2)R4 

.Q =
2µL 2 

− 
4

= 
8µL0 

Hägen­Poisseuille equation, note 4th­power relation is extremely strong! 3/4” vs. 1/2” pipe... 
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Summary Summary of the three phenomena thus far: 

Diffusion Heat conduction Fluid flow 
What’s conserved? Moles of each species Joules of energy momentum 
Local density C ρcpT ρ�u 

Units of flux 
Conservation equation∗ 

Constitutive equation 
Diffusivity 

mol 
m2 ·s 

∂C 
∂t = −� · �J + G 

�J = −D�C 
D 

W 
m2 

ρcp 
∂T 
∂t = −� · �q + q̇ 
�q = −k�T 
α = k 

ρcp 

kg m 
s 

m2 ·s = N 
m2 

∂(ρ�u) 
∂t = −�P −� · τ + �F 
τ = −η 

� 
��u + (��u)T 

� 
ν = η 

ρ 

∗Only considering diffusive fluxes. T in fluid constit. denotes the transpose of the matrix. 
New stuff: vector field instead of scalar; very different units; pressure as well as flux/shear stress and 

force. 
For those taking or having taken 3.11, shear stress τ relates to stress σ as follows: 

σ = −τ − PI 

where p is (σxx + σyy + σzz)/3, so τxx + τyy + τzz = 0, τxy = τyx = −σxy = −σyx. Note that τyx = τxy 

almost always, otherwise infinite rotation... 
Also: mechanics uses displacement for �u, acceleration is its second derivative with time. Simple shear: 

∂2�u ∂σxx ∂σyx ∂σzx ∂2ux
Fρ = � · σ + � ⇒ ρ

∂2ux = + + + Fx = G + Fx. 
∂t2 ∂t2 ∂x2 ∂y2 ∂z2 ∂z2 

Analogue to momentum diffusivity: G/ρ, units m2/s2 , G/ρ: speed of sound! Remember with a little jig: 

Fluids are diffusive,

With their velocity and viscosity.


But on replacement with displacement,

it will behave, like a wave!
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4.4	 October 31: Mechanics Analogy Revisited, Reynolds Number, 
Rheology 

Mechanics: 

•	 Next Weds 11/5: 3B Symposium! 

•	 3.21 notes on Stellar (with η changed to µ). 

•	 In all of the viewfactor problems of PS6, ignore the graphs dealing with ”nonconducting but reradiat­
ing” surfaces in the text, as we didn’t cover those this year (or last year). 

•	 In disc graph, not r1/r2 but D/r1 and r2/D. 

•	 In problem 2, ”collar” refers to the heat shield, a cylinder above the ZrO2 source. 

•	 In problem 3, the fluid layer is thin enough that we can neglect the curvature of the ram and cylinder. 
The ram motion is also vastly powerful in terms of driving flow than the weight of the fluid, so we can 
neglect rho*g in the fluid. With these two simplifications, velocity profile between the cylinder and 
ram is linear, making the problem a lot simpler. 

•	 In problem 4a, Arrhenius means proportional to exp(−ΔGa/RT ). For part b, think about what 
happens to glasses as they cool... 

•	 In problem 5, think about conduction through a multi­layer wall, in terms of the interface condition. 
Also, just as the multi­layer wall has two layers with different values of A and B in the temperature 
graph T=Ax+B, here we have two fluid layers with different values of A and B in the falling film 
solution given in class (that solution is the answer to part a). The Reynolds number will be discussed 
in tomorrow’s lecture. 

Muddy from last time: 

Crossbar on z.• 
P1 −P2 •	 Why is A = 0, B = 4µL R2 in tube? General solution: 

P1 − P2 
uz = − 

4µL 
r 2 + A ln r + B, 

boundary conditions: r = 0 uz not infinite, r = R uz = 0. So, nonzero A in A ln r gives infinite →	 → 
uz at r = 0, use B to exactly cancel first term at r = R.


Note: at axis of symmetry, ∂uz /∂r = 0, like temperature and conc; this too would give A = 0.


• Mechanics analogy: very rushed, deserves better treatment, even though not a part of this class. 

Reynolds number Like other dimensionless numbers, a ratio, this time of convective/diffusive momentum 
transfer, a.k.a. inertial/viscous forces. Formula: 

ρU L 
Re = 

η 

Describes dimensionless velocity for dimensionless drag force f ; also onset of turbulence. 

•	 Tubes: < 2100 → laminar (very constrained). 

•	 Channel, Couette: < 1000 laminar. → 

• Falling film (inclined plane): < 20 → laminar, due to free surface. 

Note didn’t give number for turbulent, that’s because it depends on entrance conditions. 
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Rheology Typical Newtonian viscosities: 

•	 Water: 10−3N · s/m2, density 103kg/m3, kinematic viscosity (momentum diffusivity) 10−6m2/s. 

•	 Molten iron: 5 × 10−3N · s/m2, density 7 × 103kg/m3, kinematic viscosity (momentum diffusivity) just 
under 10−6m2/s, close to water. Water modeling... 

•	 Air: 10−5N · s/m2, density 1.9kg/m3, kinematic viscosity (momentum diffusivity) 5 × 10−6m2/s, close 
to water! 

But, very different effect on surroundings, drag force. So even though might flow similarly over a hill, 
geologists can tell the difference between water and wind erosion damage. 

Liquids: generally inverse Arrhenius; gases (forgot). 
Non­Newtonian: graphs of τyx vs. ∂ux/∂y. Categories: 

•	 Dilatant (shear­thickening), example: fluid with high­aspect ratio solid bits; blood. More mixing, 
momentum mixing, acts like viscosity. Platelet diffusivity, concentration near walls... 

Model: power­law, n > 1. 

•	 Pseudoplastic (shear­thinning), examples: heavily­loaded semi­solid, many polymers get oriented then 
shear more easily. 

Model: power law, n < 1. 

Next time: Wierd shear­thinning behavior at low strain rates due to fibrinogen content, extremely 
sensitive to fibrinogen and measures risk of cardiovascular disease better than smoking! (Gordon 
Lowe) 

•	 Bingham plastic: finite yield stress, beyond that moves okay, but up to it nothing. Some heavily­loaded 
liquids, polymer composites, toothpaste; semi­solid metals bond together then break free. 

Model: yield stress τ0, slope µP . 

Power law relation: � �n
∂ux

τyx = µ0 
∂y 

More than 1­D leads to wierd Tresca, von Mises criteria, etc. 
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4.5 November 3, 2003: Navier­Stokes Equations! 

Mechanics: 

• Weds 11/5: 3B Symposium! 

PS7 material last on Test 2... Due next Weds. • 

• Today: mid­term course evaluations! 

Muddy from last time: 

•	 In fluids, is τ a shear or normal stress? Equating it to σ is confusing... It’s a shear stress. It might 
have “normal” components, but if you rotate it right, it’s all shear. 

•	 What’s the difference between a liquid and a Newtonian fluid? Liquids are fluids, as are gases, and 
plasmas. Definition: finite (nonzero) shear strain rate for small stresses. Bingham plastic not tech­
nically a fluid, nor in a sense is a strict power­law pseudoplastic (though tends to break down near 
0). 

The Navier­Stokes equations! Pinnacle of complexity and abstraction in this course. From here, we 
explain, we see more examples, we fill in more details. Probably last time without a motivating process... 
So don’t be surprised if you don’t understand all of this just now, it’s a bunch of math but should be clearer 
as we go on. 

3.21 “Are you ready for momentum convection?” 

Conservation of mass 2­D Navier­Stokes: two equations for three unknowns! Need one more equation, 
conservation of mass, only in­out by convective mass flux ρ�u, no mass diffusion or generation: 

∂ρ 
= −� · (ρ�u)

∂t 

∂ρ 
∂t 

u · �ρ + ρ� · �+ � u = 0 

Dρ 
u = 0 

Dt 
+ ρ� · �

Incompressible definition: Dρ/Dt = 0. Example: oil and water, discuss Dρ/Dt and ∂ρ/∂t. Incompress­
ible, not constant/uniform density. Result: � · �u = 0. 

Eulerian derivation of Navier­Stokes Like before; this time add convective momentum transfer. What’s 
that? In convective mass transfer it was ρcp� u�uT . Now it’s ρ�u. Wierd outer product second­rank tensor! 

∂uxBut what is momentum convection? Those uy ∂y terms. We’ll come back to those later. Recall heat 
transfer with convection: 

∂T 
ρcp + � · (ρcpuT ) = −� · q� + q̇

∂t 
With fluids, it’s the same: 

∂(ρ�u) 
∂t 

+ � · (ρ�u�u) = −�p −� · τ + �F 

Left side expansion, simplification: � � � � 
∂�u ∂ρ ∂ρ ∂�u 

u + ρ� u + ρ� u + �ρ + �	 u� u + � u + ρ + � u 
∂t ∂t

u� · � u · �� u · �ρ = �
∂t 

u · �ρ + ρ� · �
∂t

u · ��

Recall the continuity equation: 
∂ρ 

+ � u = 0. 
∂t 

u · �ρ + ρ� · �
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Entire first part cancels! Result: 
D�u 

ρ = −�p −� · τ + �F . 
Dt 

Now with Newtonian viscosity, incompressible: 

τ = −µ 

� 

��u + ��u T − 
2 
3 
� · �uI 

� 

. 

For x­component in 2­D: � � � � 

τx = −µ 2 
∂ux 

∂x 
ı̂ + 

∂ux 

∂y 
+ 

∂uy 

∂x 
ĵ 

−� · τx = µ 

� 

2 
∂2ux 

∂x2 
+ 

∂2ux 

∂y2 
+ 

∂2uy 

∂x∂y 

� 

= µ 

� 

�2 ux + 
∂ 
∂x 

� 
∂ux 

∂x 
+ 

∂uy 

∂y 

�� 

So, that simplifies things quite a bit. 
Incompressible Newtonian result: 

ρ 
Dux 

Dt 
= − 

∂p 
∂x 

+ µ�2 ux + Fx 

Written out in 3­D: � 
∂ux ∂ux ∂ux ∂ux 

� � 
∂2ux ∂2ux ∂2ux 

� 

ρ + ux + uy + uz −∂p/∂x + µ + + + Fx = 
∂t ∂x ∂y ∂z ∂x2 ∂y2 ∂z2 

Identify (nonlinear) convective, viscous shear “friction” terms, sources. 
The full thing in vector notation: 

D�u 
u + �ρ = −�p + µ�2� F 

Dt 

Pretty cool. Again, sorta like the diffusion equation. 
[For more on this, including substantial derivative, see 2000 David Dussault material, and “omitted” 

paragraphs from 2001.] 
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4.6 November 5, 2003: Using the Navier­Stokes Equations 

Mechanics: 

•	 Tonight: 3B Symposium! Dinner 5:30 in Chipman room. 

•	 New PS7 on Stellar: no TODO, #4c graph on W3R p. 188. 

Midterm Course Evals: • 

–	 Lectures mostly positive, cards great (one: takes too long); negatives: 1/3 too fast, 1/2 math­
intense; need concept summaries. 

–	 TA: split, most comfortable, 1/3 unhelpful, many: recs need more PS help. “Makes the class not 
hurt so badly.” 

–	 PSes: most like, old PSes a prob, need more probs for test studying. 
–	 Test: like policy, but too long. 
–	 Text: few helpful different approach, most useless! But better... 
–	 Time: from 2­5 or 3+ to 12­18; “4 PS + 2­4 banging head against wall.” 

Muddy from last time: 

•	 When we started momentum conservation, we had a P , but at the end, only ρ. Where did the P go? 
Still there. General equations: 

Dρ 
u = 0 

Dt 
+ ρ� · �

D�u 
ρ = −�P −� · τ + �F 

Dt

Incompressible, Newtonian, uniform µ:


u = 0
� · �
D�u 

ρ = 2� F 
Dt 

−�P + µ� u + �

•	 Fifth equation in compressible flows: ρ(P ), e.g. ideal gas ρ = MP/RT . 

Convective momentum transfer That nonlinear D�u/Dt part that makes these equations such a pain! 
Example: t = 0 ux = 1, uy = 2x, sketch, show at t = 0 and t = 1. Convecting eddies in background 

velocity. 
→ 

Using the Navier­Stokes Equations Handout, start with full equations and cancel terms. Flow through 
tube revisited. Longitudinal pressure trick with z­derivative of z­momentum equation: � � �� � � 

∂2P 
= 

∂ µ ∂ ∂uz = 
µ ∂ ∂2uz = 0! P = A(r, θ)z + B(r, θ)

∂z2 ∂z r ∂r ∂r r ∂r ∂r∂z 

0 = − 
∂P 

+ 
µ ∂ ∂uz ∂P/∂z 

∂z r ∂r ∂r 
⇒ uz = 4µ

r 2 + A ln r + B = − 
P1 − P2 

z 2 + A ln r + B. 
4µL 

Lateral pressure: if θ = 0 points up: 
ρgr = −ρg cos θ = ∂P/∂r, 

ρgθ = ρg sin θ = (1/r)∂P/∂θ. 

Resulting pressure: 
P = −ρgr cos θ + f(z) = f(z) − ρgh, 

for h increasing in the upward direction from z­axis. Final result: 

P = Az − ρgh + C. 
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4.7 November 7, 2003: Drag Force 

Mechanics: 

•	 New PS7 on Stellar: no TODO, #4c graph on W3R p. 188. 

Midterm Course Evals: • 

–	 Lectures mostly positive, cards great (one: takes too long); negatives: 1/3 too fast, 1/2 math­
intense; need concept summaries. 

–	 TA: split, most comfortable, 1/3 unhelpful, many: recs need more PS help. “Makes the class not 
hurt so badly.” 

–	 PSes: most like, old PSes a prob, need more probs for test studying. Bad: last material in last 
lecture before due! This time: option Weds/Fri, okay? 

–	 Test: like policy, but too long, too long delay to retake. 

–	 Text: few helpful different approach, most useless! But better... 

–	 Time: from 2­5 or 3+ to 12­18; “4 PS + 2­4 banging head against wall.” 

Test 2 in less than two weeks... Shorter wait for retake this time. • 

Muddy from last time: 

•	 Redo pressure derivation. � � �� � � 
∂2P 

= 
∂ µ ∂ ∂uz = 

µ ∂ ∂2uz = 0! P = A(r, θ)z + B(r, θ)
∂z2 ∂z r ∂r ∂r r ∂r ∂r∂z 

Lateral pressure: if θ = 0 points up: 

ρgr = −ρg cos θ = ∂P/∂r, 

ρgθ = ρg sin θ = (1/r)∂P/∂θ.


Resulting pressure:

P = −ρgr cos θ + f(z) = f(z) − ρgh,


for h increasing in the upward direction from z­axis. Final result:


P = Az − ρgh + C. 

•	 What’s fully­developed, edge effects in cylindrical coordinates? Flow direction derivatives deal with 
fully­developed. If axisymmetric and flow is mostly θ, then can use this as “fully­developed”. 

Edge effects: flow direction, large variation direction, third direction is “edge” direction. For tube flow, 
was θ, so axisymm is equiv to “no edge effects”. For rod­cup, will be something else. 

Drag force Integrated traction (force per unit area) in one direction. For tubes, it’s in the z­direction, 
use the shear traction (stress) times area: Fd = τ · A. Here, looking at τrz : 

∂uz 
uz = 

P1 − P2 (R2 − r 2) ⇒ τrz = −µ = 
P1 − P2 

r. 
4µL	 ∂r 2L 

Fd = 2πRL · τrz r=R = 2πRL
P1 − P2 

R = πR2(P1 − P2).|
2L 

Neat result: this is just the net pressure force. Okay, what if we know desired velocity, want to estimate 
required pressure? In terms of uav : 

umax 
uav = =

(P1 − P2)R2 

,
2 8µL 
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(P1 − P2)R2 

Fd = 8πµL = 8πµLuav .8µL 
· 

For any laminar flow, this is the drag force. Drag is shear traction times area: 

Fd 8πµLuav =
4µ 8µ

Fd = τrz · 2πRL τrz = 2πRL 
=

2πRL R
uav = uav .⇒ 

d 

Okay, using uav to correlate with flow rate whether laminar or turbulent. So what about turbulent? 
Density plays a role because of convective terms. Dimensional analysis: 

τ = f (U, µ, d, ρ) 

Five parameters, three base units, so two dimensionless parameters. Four different nondimensionalizations! 

Keep πτ πother 
ττ , µ ρU 2 πµ = µ 

ρU d 
τ d πρ = ρU d τ , ρ µU µ 

τ d2 ρ πU = ρU d τ , U 2µ µ 
τ πd = ρU d τ , d ρU 2 µ 

First and last are essentially the same, though last is more familiar (Reynolds number), so ignore the first. 
Third is just a mess, so throw it out. Second is a great fit to what’s above. So use last, or second? 

With turbulence, there are different curves with different surface roughnesses, roughly proportional to 
U 2 . If use second, get one flat πτ laminar, multiple lines for turbulent πτ . If use first/last, one line for 
laminar, multiple flats for turbulance (p. 188). So this is generally more convenient. 

1Dimensionless πτ is called (fanning) friction factor f (ff ). The denominator 2 ρU 2 is the approximate 
kinetic energy density, we’ll call it K, a.k.a. dynamic pressure. So: 

τ 
τ = f K, Fd = f KA, f = 1 = f (Re). 

ρU 2 
2 

Laminar flow friction factor: 
τ 

= 
8
d
µ uav 16µ 

= 
16 

f = = 1 ρU 2 1 ρU 2 ρU d Re 
. 

2 2 

To calculate drag force: Reynolds number (and surface roughness) → friction factor f τ = f K, Fd = f KA.→ 
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4.8 November 12, 2003: Drag Force on a Sphere 

Mechanics: 

•	 Test 2 11/19 in 2­143, preview handout today. 

•	 PS7 extended to Friday. 

Muddy from last time: 

•	 How is f = 16µ/ρU d? 

8µ τrz	 16µ 
= 

16 
τrz = uav f = 1 =

8µuav /d 
= 

ρuav d Re 
.1d 

⇒ 
ρu2 ρu2 

2 av 2 av 

•	 What’s the point of defining f ? We just need τ , right? Well, f is easy for laminar flow, for turbulence 
it’s more complicated. This gives us a parameter to relate to the Reynolds number for calculating drag 
force in more general situations. More examples on the way. 

ˆ•	 Or was it �t, not f ? In that case, traction �t = n, force per unit area. In this case, with n = r̂,σ · 
�t = (τrr + p, τrθ , τrz ). The relevant one for the z­direction is τrz , but traction is more general, see an 
example later today. 

•	 Why was option #4 the “better” graph? Expanded version: with roughness at high Re, f is constant. 
So if Re=108, friction factor is only a function of e/d down to e/d = 10−5! 

•	 Please review this process Q → uav Re f τ → Fd → ΔP .→ → → 

Q ρuav d 
= uav , Re = , f = f (Re, e/d), τrz = f K, Fd,z = τrz A = f KA(A = 2πRL), ΔP = 

Fd 
. 

πR2 µ	 πR2 

Reynolds Number revisited Low velocity: shear stress; high velocity: braking kinetic energy. Ratio of 
forces: 

ρuy 
∂uxconvective momentum transfer inertial forces ∂y ρU U/L 

= 
ρU L 

Re =	 = 
∂2 ux 

.
shear momentum transfer viscous forces 

� 
µ ∂y2 

� 
µU/L2 µ 

Flow past a sphere Motivating process: Electron beam melting and refining of titanium alloys. Water­
cooled copper hearth, titanium melted by electron beams, forms solid “skull” against the copper. Clean heat 
source, liquid titanium contained in solid titanium, results in very clean metal. Mystery of the universe: 
how does liquid Ti sit in contact with solid Cu? Main purpose: removal of hard TiN inclusions often several 
milimeters across which nucleate cracks and bring down airplanes! (1983 Sioux City, Iowa.) 

Set up problem: sphere going one way usphere, fluid other way u∞, local disturbance but relative velocity 
U = u∞ − usphere, relative veloc of fluid in sphere frame. Drag force is in this direction. 

For a sphere, drag force is slightly different: it has not only shear, but pressure component as well. 
ˆTraction �t = σ · n. Stokes flow: ingore the convective terms, result (pp. 68­71): 

Fd = 3πµdurel. 

At high velocity, similar friction factor concept to tube: 

1 1 
Fd = f KA = f · ρU 2 πd2 .

2 
· 
4 

Again, f (Re), but not really πτ because τ is all over the place, more of an average. This time, low Re (<0.1) 
means Stokes flow, can ignore all convective terms; analytical result in 3.21 notes, drag force: 

1 1 
Fd = 3πµU d = f · ρU 2 πd2 ⇒ f = 

24µ 
= 

24 
.

2 
· 
4 ρU d Re 
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If faster, though not turbulent, f becomes a constant. Graph on W3R p. 153 of f (they call cD ) vs. Re. 
Constant: about 0.44, that’s what I’ve known as the drag coefficient. Cars as low as 0.17, flat disk just 
about 1, making dynamic pressure a good estimate of pressure difference. 

For rising/sinking particles, set drag force to buoyancy force, solve for velocity. If not Stokes flow, you’re 
in trouble, way to do it but it’s complicated. 

Can NOT use this for bubbles. For those, Fd = 2πµUd all the way out to Re=105! 
So, what about precipitation? Buoyancy force and weight vs. drag force, all sum to zero: 

1 1 
Fw = πd3ρsphere, Fb = πd3ρf luid, Fd = what we just calculated.

6 6 

After all, if you’re not part of the solution, you’re part of the precipitate. (Ha ha) 
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4.9 November 14, 2003: Boundary Layers Part I 

Mechanics: 

•	 Wulff Lecture Tues 4:15 6­120: Information Transport and Computation in Nanometer­Scale Struc­
tures, Don Eigler, IBM Fellow. 

•	 Test 2 11/19 in 2­143. Solving Fluids Problems provided if needed. 

•	 PS7 solution error: #1 replace L with δ, “length” with L. Correction on Stellar. 

Muddy from last time: 

Which are the convective and viscous terms? In vector Navier­Stokes momentum: 

u ∂�D� u 
ρ = ρ + � u = −�P + µ�2� F . 

Dt ∂t
u · �� u + �

Convective terms are the � u terms, like ux∂uy /∂x, the nonlinear terms which make the equations u · ��
such a pain to solve and create turbulence... Viscous ones are µ�2�u. 

•	 Why do thin ellipsoids have less drag than spheres, but flat plates have more? Depends on orientation. 
P&G has a few more examples on p. 87. Neat thing: the Stokes flow f = 24/Re holds for all of them! 

•	 Are log(f) vs. log(Re) plots for only turbulent, or both laminar and turbulent? Both, that’s the neat 
thing. For tube, sphere, and BL, it captures everything. 

Sphere flow wrapup Another neat way to think about Re: ratio of inertial to shear forces 

ρU2 πd2 ρUd ·
µdU 

∝ 
µ 

= Re. 

Can NOT use this flow­past­sphere stuff for bubbles. For those, Fd = 2πµUd all the way out to Re=105! 
Boundary conditions... 

“Boundary layers” in a solid Thought experiment with moving solid: extruded polymer sheet (like 
PS4 extruded rod problem). Start at high temp, if well­cooled so large Biot then constant temperature on 
surface; no generation. Full equation: 

DT 
= α�2T 

Dt 
Define boundary layer thickness δx where temperature deviates at least 1% from far­field. If δ � x, then 

∂2T ∂2T 
>> 

∂y2 ∂x2 

∂T ∂2T 
ux = α 

∂x ∂y2 

Transform: τ = x/ux, becomes diffusion equation, erf solution: 

T − Ts = erf � 
y 

Ti − Ts 2 αx/ux 

If we define δ as where we get to 0.99, then erf−1(.99) = 1.8, and 

δ 
y = δ where � = 1.8 

2 αx/ux 

αx 
δ = 3.6 

ux 

Obviously breaks down at start x = 0, but otherwise sound. 
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Boundary layers in a fluid Now we want to calculate drag force for flow parallel to the plate. 
Similar constant IC to solid, infinite BC, call it U∞. Difference: BC at y = 0: ux = uy = 0. Have to 

solve 2­D incompressible steady­state Navier­Stokes: 

∂ux + 
∂uy = 0 

∂x ∂y 

ux 
∂ux 

∂x 
+ uy 

∂ux 

∂y 
= − 

∂p 
ρ∂x 

+ ν 

� 
∂2ux 

∂x2 
+ 

∂2ux 

∂x2 

� 

ux 
∂uy 

∂x 
+ uy 

∂uy 

∂y 
= − 

∂p 
ρ∂y 

+ ν 

� 
∂2uy 

∂x2 
+ 

∂2uy 

∂x2 

� 

� 
Then a miracle occurs, the Blassius solution for δ � x is a graph of ux/U∞ vs. β = y U∞/νx; hits 0.99 at 
ordinate of 5: � 

νx 
δ = 5.0 . 

U∞ 

Why 5.0, not 3.6? Because there must be vertical velocity due to mass conservation (show using differential 
mass equation and integral box), carries low­x­velocity fluid upward. Slope: 0.332, will use next time to 
discuss shear stress and drag force. 
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4.10 November 17, 2003: Boundary Layers Part II 

Mechanics: 

•	 Wulff Lecture Tues 4:15 6­120: Information Transport and Computation in Nanometer­Scale Struc­
tures, Don Eigler, IBM Fellow. 

•	 PS7 solution error: #1 replace L with δ, “length” with L. Correction on Stellar. 

•	 Zephyr hours tomorrow 9­12, 1­3; also Weds 4­7 PM. 

• Test 2 11/19 in 2­143. Solving Fluids Problems provided if needed. 

Muddy from last time: 

• Nothing!


Recall our “miraculous” Blassius solution to the 2­D Navier­Stokes equations (draw the graph)... At


∞ 

νx 

y = 0, slope: 0.332, so viscous drag: 

∂ux ∂ux ∂β 
=τyx = −µ 

∂y 
−µ 

∂β ∂y 

U
τyx = −µ · 0.332U∞ 

Note: a function of x (larger near leading edge), diverges at x = 0! But δ � x does not hold there. 
Now set to a friction factor: � 

13ρµU∞ 2ρU∞τyx = −0.332 = fx · 2x 

This time τ is not constant, so we have different fx = τ /K and fL = Fd/KA. Let’s evaluate both: 

µ 
=

0.664 
fx = 0.664 

ρU∞x 
√

Rex


Also, note dimensionless BL thickness: �

νx 

δ = 5.0 
U∞ 

5.0 √
Rex 

δ ν
= 5.0 = 

x U∞x 

Lengthwise, global drag force, average friction factor. Neglect edge effects again... � � L 

Fd = τyxdA = W tauyxdx 
x=0 � L 3ρµU∞Fd = W 0.332 dx 

x=0 x 

2
√

LFd = 0.332W 

Fd = 0.664W 3ρµU∞

3ρµU∞ · 

L 

Now for the average friction factor/drag coefficient: 

0.664W 1.328 
= √

ReL 

3ρµU ∞LFd
fL = = = 1.328 

µ 
KA 1 2ρU∞ W L ρU∞L·2 

This is what is meant by average and local friction factors on the Test 2 overview sheet. Don’t need to know 
for test 2, since for a tube they’re the same. For a sphere, only defined average/global, but for a BL, they’re 
different. 
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Entrance Length For channel flow between two parallel plates spaced apart a distance H, we can define 
the entrance length Le as the point where the boundary layers from each side meet in the middle. The twin 
Blassius functions are close enough to the parabolic profile that we can say it’s fully­developed at that point. 
So we can plug in the boundary layer equation if flow is laminar: 

H νx 
x = Le = δ = 5.0 ,⇒ 

2 U∞ 

H2U
Le = ∞ 

.
100ν 

If Le � L, then flow is fully­developed for most of the tube, so the fully­developed part will dominate the 
drag force and Fd = τ · 2πRL. 

Movie Friday... 
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4.11 November 21, 2003: Turbulence 

Mechanics: 

•	 Turbulence movie: QC151.T8; guide QC145.2.F5 Barker Media. 

Muddy from last time: 

•	 What’s the physical significance of “Blassius”? Some guy who came up with this function to solve a 
slightly­reduced 2­D Navier­Stokes. There are actually three, for ux, uy and p in the boundary layer, 
all δ � x. For drag force, only ux is needed. 

•	 Is dBL/dβ only the slope at the initial part of the curve? If by “initial”, you mean y = 0 (the bottom), 
then yes. 

•	 What’s the difference between fx and fL? Here, τ is not constant, graph τ and τav Fd, show how 
average is twice local at the end. Hence fL is twice fx. 

→ 

•	 How about “Rex ” and “ReL”? No significance, just different lengthscales, one for local and one for 
global/average. 

•	 Difference between uav and U ? Should be no uav for BL problems, sorry if I made a writo. D’oh! ∞
This is wrong, see next lecture’s notes. 

•	 What’s up with δ/x? Just a ratio, dimensionless for convenience, allows to evaluate δ � x. 

•	 What is velocity profile for entrance length if not laminar? Get to that later (next Monday or so). 

•	 What happens near leading edge? Something like the sphere: kinda complicated. Maybe solvable for 
Stokes flow... 

Turbulence Starting instability, energy cascade. Vortices grow in a velocity gradient because of momen­
tum convection, damped due to viscosity; therefore, tendency increases with increasing Re. 

Resulting behavior: 

Disorder. • 

•	 “Vorticity” in flow, 3­D. 

•	 Lots of mixing, of mass and heat as well as momentum. 

•	 Increased drag due to momentum mixing, as small vortices steal energy from the flow. 

The movie! 
Parviz Moin and John Kim, “Tackling Turbulence with Supercomputers,” Scientific American January 

1997 pp. 62­68. 

Turbulence may have gotten its bad reputation because dealing with it mathematically is one 
of the most notoriously thorny problems of classical physics. For a phenomenon that is literally 
ubiquitous, remarkably little of a quantitative nature is known about it. Richard Feynman, the 
great Nobel Prize­winning physicist, called turbulence “the most important problem of classical 
physics.” Its difficulty was wittily expressed in 1932 by the British physicist Horace Lamb, who, 
in an address to the British Association for the Advancement of Science, reportedly said, “I am 
an old man now, and when I die and go to heaven there are two matters on which I hope for 
enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids. 
And about the former I am rather optimistic.” 
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That article goes on to talk about direct numerical simulation of all of the details of turbulent flows, of 
which I am not a great fan. Why? as pointed out in my JOM article “3­D or not 3­D”, even if computers 
continue to double in computational power every eighteen months, the fifth­power scaling of complexity with 
lengthscale in three dimensions (cubic in space times quadratic in time) means that the resolution of these 
simulations will double only every seven­and­a­half years! 

To take a simple illustrative example, direct numerical simulation of turbulence in continuous casting 
involves Reynolds numbers on the order of one million, and the smallest eddies are a fraction of a millimeter 
across and form and decay in a few milliseconds. One must account for interaction with the free surface, 
including mold powder melting and entrainment, as well as mold oscillation, and surface roughness of the 
solidifying metal, since with turbulent flow, the details of these boundary conditions can make a large 
difference in macroscopic behavior. The formulation alone is daunting, and computational work required to 
solve all of the equations on each of the tens of trillions of grid points over the millions of timesteps required 
to approach steady­state will be prohibitively costly for many years, perhaps until long after Moore’s law 
has been laid to rest (indeed, the roughly four petabytes of memory required to just store a single timestep 
would cost about two billion dollars at the time this is being written). Furthermore, postprocessing that 
many degrees of freedom would not only be computationally difficult, but it is not clear that our minds 
would be able to comprehend the resulting complexity in any useful way, and further, the exercise would 
be largely pointless, as one really cares only about coarse­grained averages of flow behavior, and detailed 
behavior perhaps at certain interfaces. 

Analysis: for 1 m flow through the nozzle 0.1 m in diameter, with kinematic viscosity of .005/7000� 10−6 
s 

2 m , this gives us Red � 105 . Using the larger lengthscale H of the caster, around 1 m, this gives ReH � 106 ,s 
this is given in the paragraph above. Using standard enengy cascade/Kolmogorov microscale analysis, the 
energy dissipation rate for the largest turbulent eddies in a tube is given by � �2

U 
,� ∼ µt 

d 

where µt is the turbulent viscosity, U the eddy velocity estimated by the average velocity, and d the eddy 
size estimated by the tube diameter. Combining this with the well­known Kolmogorov result for the smallest 
eddy lengthscale �: � 

µ3 
� ∼ 4 

ρ2� 

(ρ is density) gives the smallest eddy lengthscale as 

1 µ 
.� ∼ d √

Red 

4 

µt 

Even using the conservative estimate of µt = 30µ gives � ∼ 0.1 mm, in 1 meter cubed this gives a trillion 
grid points, but you want a few grid points across each smallest eddy which means about a few3 � 100 times 
more grid points, hence “tens of trillions”. 

Put slightly differently, the total rate of energy dissipated in a jet at steady­state is the rate of kinetic 
energy input, which is the product of volumetric kinetic energy given by dynamic pressure and the flow rate: 

1 π 
�V = ρU 2 π

d2U = ρU 3d2 

2 
· 

4 8 

mTaking the volume as 1 m3, average velocity of 1 s , nozzle diameter of 0.1 m and density of 7000 kg gives 3m

� � 30 W Putting this into the Kolmogorov lengthscale expression again gives � ∼ 0.1 mm. 3 . m
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4.12 November 24, 2003: Turbulence, cont’d 

Mechanics: 

•	 Turbulence movie: QC151.T8; guide QC145.2.F5 Barker Media. 

Muddy from last time: 

•	 Difference between uav and U∞? I messed up last time, for the entrance length situaiton, we we take 
average velocity as U∞, the initial “free stream” velocity. Sorry to confuse you last time. 

•	 On that note, just as we have the dimensionless boundary layer thickness, we also have the dimensionless 
entrance length:


H2uav Le ReH

Le = = 

100ν 
⇒ 

H 100 
. 

So a large Reynolds number means a long entrance length (1000 means ten times the channel width), 
and vice versa. 

Energy cascade and the Kolmogorov microscale. Largest eddy Re=U L/ν, smallest eddy Reynolds number 
u�/ν ∼ 1. Energy dissipation, W/m3; in smallest eddies: � �2 2du u

� = η 
dx 

∼ η
�2 

Assuming most energy dissipation happens there, we can solve these two equations, get smallest eddy size 
and velocity from viscosity, density and dissipation: 

� ρ�2 � 
u ∼ � 

η 
⇒ 

η η 
∼ 1 

η3 

� ∼ 
ρ2� 

This defines the turbulent microscale. For thermal or diffusive mixing, turbulence can mix things down 
to this scale, then molecular diffusion or heat conduction has to do the rest. Time to diffusive mixing in 
turbulence is approximately this �2/D. 

So suppose we turn off the power, then what happens? Smallest eddies go away fast, then larger ones, 
until the whole flow stops. Timescale of smallest is �2/ν, largest is L2/νt, turbulent effective viscosity. Get 
into modeling and structure later if time is available. 

Turbulent boundary layer Laminar is good until Rex = 105, associated boundary layer thickness and 
local friction factor: 

δ 5.0 0.664 1.328 
= , fx = , fL = , 

x 
√

Rex 
√

Rex 
√

ReL 

In range 105 to 107, transition, oscillatory; beyond 107 fully turbulent. Always retains a laminar sublayer 
against the wall, though it oscillates as vortices spiral down into it. New behavior: 

δ 0.37 
= 

x Re0.2 
x 

So δ ∼ x0.8 . Grows much faster. Why? Mixing of momentum, higher effective velocity. But still a laminar 
sublayer near the side. 

fx is oscillating all over the place, but what about the new fL? Disagreement, even for smooth plate: 
0.455	 0.146

P&G p. 38 : fL = 
(log ReL)2.58 

; BSL p. 203 : fL = 
Re0.2 

L 

Either way get some kind of curve in f ­Re space which jumps in turbulence. W3R doesn’t give an fL, just 
an fx on p. 179, which is: 

0.0576 
fx = 

(Rex)0.2 
. 
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+ µ�

Time­smoothing Time smoothing, or experiment­smoothing and Reynolds stresses: velocity varies wildly, 
ux + u� , where ¯decompose into ux = ¯ u is time­smoothed: x � tb uxdt 

ūx =	 ta . 
tb − ta 

For time­dependent, experiment­average it.


Contest Prizes Wednesday for those who catch the two errors in the Navier­Stokes equations t­shirt!


Not covered this year The following topics were not covered in lecture, but are here for your edification

if you’re interested. 

Reynolds stresses Then take time­smoothed transport equations: 

¯ ∂( ¯ ¯ ux + ux
� )

= 
∂ ̄¯

+ 
∂u� ∂ūxux x = + 0. 

∂t ∂t ∂t ∂t 

Same with spatial derivatives, pressure terms. But one thing which doesn’t time­smooth out: 

�
x 
∂u�x = 0. 
∂x 

�u

This forms the Reynolds stresses, which we shift to the right side of the equation: 

∂ux ∂uy ¯+ ρu� uyxτxy = −µ 
∂y ∂x 

− 

Show how it’s zero in the center of channel flow, large near the sides, zero at the sides. The resulting mass 
equation is the same; x­momentum equation: 

¯ ∂ū ∂P	 ∂ ∂ ∂¯ 2 ūx − ρux =u · �¯ − (ρu ) + �
x (ρu ) + �

y (ρu )�z + Fx.�
xu �

xu �
xuρ + 

∂x ∂t ∂x ∂y ∂z 

Turbulent transport and modeling Recall on test: pseudoplastic, Bingham. Define effective viscosity: 
shear stress/strain rate. 

On a micro scale, lots of vortices/eddies. On a macro scale, mixing leads to higher effective Dt, kt, and 
ηt at length scales down to that smallest eddy size, less so close to walls. All three turbulent diffusivities 
have the same magnitude. 

New dimensionless number: Prandtl number is ratio of ν to diffusivity, e.g. ν/D and ν/α. Prt � 1 for 
heat and mass transfer. 

Next time: thermal and solutal boundary layers, heat and mass transfer coefficients, turbulent boundary 
layer, then natural convection. Last, Bernoulli equation, continuous reactors. 

Modeling: K − � and K − � modeling (Cµ, C1, C2, σK and σ� are empirical constants): 

+ u 2 
z ), νt 

K2 

= Cµ . 
1 2 2ρ(ux + uyK = 
2 

DK νt � � 
= �K + νt�� u + (��

Dt 
� · 

σK 
u · �� u)T − �. 

D� νt νt�	 �2 

u + (��=	 u · (�� u)T ) − C2 . 
Dt 

� · 
σ� 
�� + C1 

K 
��	

K 
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Chapter 5


Coupled Fluids with Heat and Mass 
Transfer 

5.1 November 26, 2003: Coupled Fluids, Heat and Mass Transfer! 

Mechanics: 

•	 Congrats to Jenny and David for winning the contest, prize: $5 Tosci’s. 

•	 PS8 on Stellar, due Fri 12/5. 

•	 Evaluations next Wednesday 12/3. 

Muddy from last time: 

•	 Time smoothing: what are ux, ūx, ux
� ? They are: the real velocity, the time­smoothed component of 

velocity, and the fluctuating component of velocity. 

•	 What timescale can you find from the lengthscale of the smallest eddies? How would one go about this? 
Two timescales are relevant here: one is diffusion timescale �2/D, which gives mixing time, and the 
timescale of formation and elimination of these little eddies �2/ν. When attempting direct numerical 
simulation of turbulence, this tells how small a timestep one will need (actually, a fraction of this for 
accuracy); this also describes how long the eddies will last after the mixing power is turned off. 

Thermal and solutal boundary layers Types: forced, natural convection; forced today, natural later. 
Recall first BL thought experiment on thick polymer sheet extrusion, hot polymer sheet T and cold ∞

water Ts. Now it’s happening in a liquid, competing thermal and fluid boundary layers with thicknesses δu 

and δT . 
Fluid:	 � 

νx 
δu = 5.0 

U∞ 

Thermal if flow uniform, same criterion: � 
αx 

δT = 3.6 
U∞ 

Dimensionless: 
δT 3.6 3.6 
x U∞ x 

√
RexPr 

α 

When is flow uniform? In a solid, or for much larger thermal boundary layer than fluid, so α >> ν, Pr<< 1. 
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Another way to look at it: 
δT = 0.72Pr−1/2 

δu 

Large Prandtl number (>.5) means

δT
 = 0.975Pr−1/3 

δu 

Liquid metals (and about nothing else) have small Pr; mass transfer Pr is almost always large. E.g. 
2 2 2 

water ν = 10−6 m = 10−2 cm , but D is typically around 10−5 cm . s s s 
Note: blood platelets diffuse at around D = 10−9, but tumbling blood cells not only stir and increase 

diffusivity, but somehow platelets end up on the sides of blood vessels, where they’re needed. I don’t fully 
understand... 

Heat and Mass Transfer Coefficients What about h? Start with hx, then hL, as before with fx and 
fL. Let βT = y U∞/αx, θ = T − Ts/T∞ − Ts, graph θ vs. βT gives θ = erf(βT /2). 

Heat conduction into the liquid: 

∂T dT dθ ∂βT 
qy = −k 

∂y 
= −k 

dθ dβT ∂y 

1 U
qy = k(Ts − T∞) ∞ = hx(Ts − T∞)√

π αx 

k U∞ = 
kρcpU

hx = √
π αx πx 

∞ 

Likewise for mass transfer, ρcp is effectively one, so: 

DU
hDx = ∞ 

πx 

Next time: average, dimensional analysis, δT < δu case. 
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5.2	 December 1, 2003: Nusselt Number, Heat and Mass Transfer 
Coefficients 

Mechanics: 

• Evals Wednesday. 

Muddy from last time: 

•	 In the thermal boundary layer with constant velocity, why is ∂2T /∂x2 << ∂2T /∂y2? That’s because 
δ � x, so graph T vs. x and vs. y, show y­deriv is larger. 

Is there a physical meaning behind δT /δu ∝ Pr−1/2 and δC /δu ∝ Pr−1/3? Yes, see below. • 

Heat and mass transfer coefficients Recap last time: 

•	 Flow and heat/mass transfer: weakly coupled. So far, all laminar. 

•	 Case 1: much larger thermal(/concentration) boundary layer (Pr<0.1): consider T/C BL to have 
uniform velocity, use same BL formulation as moving solid motivating example: erf solution, δT = 
3.6 αx/U∞. Here:


δC /δu or δT /δu = 0.72Pr−1/2 .


Physical meaning: grows as sqrt of diffusivity, so ratio is ratio of square roots of diffusivity, which is 
inverse sqrt(Pr). 

•	 Case 2: smaller thermal(/concentration) boundary layer (Pr>5 or so): consider T/C BL to have linear 
velocity, smaller velocity means thicker T/C BL. Here: 

δC /δu or δT /δu = 0.975Pr−1/3 . 

•	 Moving on, back to case 1, calculated q|y=0 from erf solution: 

1 U
qy = k(Ts − T∞) ∞ = hx(Ts − T∞) ⇒ hx = 

kρcpU∞ 
.√

π αx	 πx 

Likewise for mass transfer:	 � 
DU

hDx = ∞ 
. 

πx 

Since that’s the local, let’s integrate for average, neglecting edge effects: � L1 
qav = hx(Ts − T∞)W dx = hL(Ts − T∞)

W L x=0 �L2(Ts − T∞) 
�� 

kρcpU∞x/π = hL(Ts − T∞)
L x=0 

hL = 2 
kρcpU∞ = 2hx|x=LπL 

Now for case 2 (high­Prandtl), need different formulation. Dimensional analysis of mass transfer: 

hD = f (Df l, U, x, ν) 

Five parameters, two base units (cm, s), so three dimensionless. Eliminate x and D. Then one dimensionless 
is Reynolds (πU ), one is Prandtl (πν ), what’s the third? 

hDx 
πhD = 

Dfl 
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Looks like the Biot number, right? But it’s not, it’s actually quite different. 

hD L Resistance to conduction in solid 
Bi = = 

L/Dsolid = 
Dsolid 1/h Resistance due to BL in liquid 

Uses L=solid thickness, Dsolid. Heat transfer note: you get one extra dimensionless number, due to heating 
by viscous friction. 

Here, Nusselt #, L=length of plate (in flow direction), the conduction and BL are in the same medium, 
use Dliquid. 

hD L L L L
Nu = = or . 

Dliquid Dliquid/hD 
� 

δC δT 

Low­Prandtl fit: �

2
hLL 

= 2 
U∞L 

= √
π 

Re1/2Pr1/2 

k πα L 

Actually, for small to “medium” Pr, slight correction: 

0.564Re1/2Pr1/2 
xNux =


1 + 0.90
√

Pr


1.128Re1/2Pr1/2 
xNuL =


1 + 0.90
√

Pr


High: (>0.6): nice derivation in W3R chapter 19: 

Pr0.343 Nux = 0.332Re1/2 
x 

Pr0.343 NuL = 0.664Re1/2 
L 

Just as there are more correlations for f (friction factor), lots more correlations for various geometries etc. 
in handout by 2001 TA Adam Nolte. Summarize: flow gives Re, props give Pr, gives Nu, gives h (maybe 
Bi). 
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5.3 December 3: Natural Convection 

Mechanics: 

•	 Course evals today! 

Muddy from last time: 

•	 What’s the relationship between hx or hL and the friction factor? Hmm... Meaning: heat transfer 
coefficient, kinetic energy transfer coefficient. Types: local, global/average. Laminar flow variation: 
both∼ 1/

√
x, integral∼

√
x, average∼ 1/

√
x. Laminar fL = 2fx x=L, hL = 2hx x=L. Dimensionless: | |

f = f (Re), Nu=f (Re,Pr). Different correlations for different geometries. 

•	 Other Nusselt numbers from sheet by Adam Nolte. (Note for Re=0 with a sphere...) 

Natural convection Hot stuff rises, cold stuff sinks. Obvious examples: radiators, etc. Strongly­coupled 
equations: 

Dρ 
u = 0 

Dt 
+ � · �

D�u 
ρ = 2�u + ρ�g

Dt 
−�p + η�

DT 
= α�2T + 

q̇

Dt ρcp 

Full coupling comes in the ρ in the fluid flow equations. 
Volumetric thermal expansion coefficient: 

1 dρ 
β = , ρ − ρ0 = β(T − T0)−

ρ dT 

Note relation to 3.11 thermal expansion coeff: 

1 dL 
α = 

L dT 

1 dρ V d(M/V )
β = −

ρ dT 
= −

M dT 

d(1/V ) = −dV /V 2 , dV = d(L3) = 3L2dL 

dV 3L2dL 3 dL 
β = V = = = 3α. 

V 2dT V dT L dT 

Word explanation: heat a solid cube, length increases 1% in each direction, volume increases 3%. Both have 
units 1/K. Ideal gases: � � 

P 1 dρ RT P 
ρ = 

RT
, β = −

ρ dT 
= − 

P 
−

RT 2 
= 1/T. 

1 dρAlso βC = ρ dC .−
Simplest case: vertical wall, Ts at wall, T∞ with density ρ∞ away from it, x vertical and y horizontal for 

consistency with forced convection BL. Assume: 

1. Uniform kinematic viscosity ν = ν∞. 

2. Small density differences: ρ only matters in ρg term, otherwise ρ for convective terms. ∞ 

3. Steady­state. 

4. Boussinesq approx:	 p � −ρ∞gx + const, obvious away from BL, no pressure difference across BL to 
drive flow. 
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5. Also with small density diff: Δρ/ρ = βΔT (ρ is roughly linear with T ). 

6. No edge effects (z­direction). 

With assumptions 1 and 2, get momentum equation: 

∂�u 1 
∞�2�

∂t 
u · ��

ρ
+ � u = ν u + (ρ�g −�p) . 

∞ 

Now for x­momentum, steady­state (assumption 3), assumption 4 gives: 

� ux = ν 2 ux + 
−ρg + ρ∞g 

u · � ∞�
ρ∞ 

Now assumptions 5 and 6, x­momentum becomes: 

∂ux 
ux 

∂ux + uy = ν 2 ux + gβ(T − T∞)
∂x ∂y ∞�

With Ts > T∞ and gx = −g, this gives driving force in the positive­x direction, which is up, like it’s supposed 
to. Okay, that’s all for today, more next time. 
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5.4 December 5: Wrapup Natural Convection 

Mechanics: 

• Test 2: before max=90, mean 75.38, std. dev 12.23; after max=100, mean 95.76, std. dev 6.37. 

Muddy from last time: 

• D’oh! Left too early... 

Last time: assumptions led to equation: 

∂ux 
ux 

∂ux + uy = ν 2 ux + gβ(T − T∞)
∂x ∂y ∞�

One more assumption, δu � x, gives: 

∂ux ∂ux ∂2ux 
ux + uy = ν∞ 

∂y2 
+ gβ(T − T∞)

∂x ∂y 

New dimensional analysis:

h = f(x, ν, k, ρcp, gβ, Ts − T∞)


Seven params 4 base units (kg, m, s, K); 3 dimless params. Again Pr (dim’less ρcp), Nu (dim’less h), this 
time Grashof number (dim’less β). 

∞)L3 

Gr = 
gβ(Ts − T

ν2


Forced convection: Nu = f(Re, Pr).

Natural convection: Nu = f(Gr, Pr).

Detour: recall falling film


g sin θ(2Lz − z2) 
ux = 

2ν 

g sin θL2 

uav = 
3ν 

uavδ g cos βδ3 

Re = = 
ν 3ν2 

So Gr is a natural convection Reynolds number, determines the rate of growth of the BL. 
Graphs of dimensionless T = (T −T∞)/(Ts −T∞), dimensionless ux = Rex/2

√
Grx vs. y/ 4

√
Grx on P&G 

p. 232 corresponding to dimensional graphs in W3R p. 313. Explain velocity BL is always at least as thick 
as thermal BL, but thermal can be thinner for large Pr. 

Forced convection: δ ∝
√

x 
Natural convection: δ ∝ 4

√
x 

Note: in P&G p. 232 plots, Pr=0.72 corresponds to air. 
T −TAnother Gr interpretation: dimensionless temperature gradient; for θ = Ts −T

∞ : 
∞ 

1 1∂T ∂T ∂θ Grx Grx4 4= (Ts − T∞)f(Pr) � 
4 

= 
4 4∂y ∂θ x xGrx∂ y 

4x 

4

Note velocity squared proportional to driving force in pipe flow, kinda same here; heat trans proportional √
Grx.to square root of velocity. Hence Rex ∝

√
Grx for velocity, Nux ∝

√
Rex ∝

Transition to turbulence determined by Ra=GrPr, boundary at 109 Laminar, Ra between 104 and 109:. 

0.902Pr1/2 � 
4 

NuL = 
GrL/4 (0.861 + Pr)1/4 
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Special for 0.6 < Pr < 10, laminar: 
NuL = 0.56(GrLPr)1/4 

Turbulence, Ra between 109 and 1012 (p. 259): 

0.0246Gr2/5
Pr7/15 

LNuL = 
(1 + 0.494Pr2/3)2/5 

Again, velocity0.8 in a way, sorta like turbulent forced convection boundary layers. 
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5.5	 December 8: Wrapup Natural Convection, Streamfunction 
and Vorticity 

Mechanics: 

•	 Final exam Monday 12/15 in 4­149. Discuss operation, incl. closed/open sections, new diff eq, essay. 

Muddy from last time: 

•	 What were we supposed to get out of the last lecture? Pretty much the list given: how natural conv 
BLs work, calculate h(D)L using NuL, δu ≥ δT or δC , natural BLs grow more slowly, velocity and 
temperature profiles. 

•	 What direction is velocity? Dominant velocity is in x­direction, which is vertical; upward for hot wall, 
downward for cold. What’s the difference between velocity in the BL, far from it? Far from it, velocity 
is zero. 

•	 Why δu ≥ δT ? Hot region lifts (or cold region sinks) fluid, so all of the hot/cold region (thermal BL) 
will be moving (in the velocity BL). For large Pr, ν > α, so the momentum diffusion happens faster, 
thin thermal and thick velocity. � 

4y •	 Dimensionless curves: crazy non­intuitive axis value x√
Rex. 

Grx/4! Well, not much worse than Blassius: 
But I’ll give you that the dimensionless velocity is a bit odd. ux/U∞ vs. β = y U∞/νx = y 

x 

• Where do these things come from? Okay. Concretize: 

ux x 

2
√ν 

Grx 
=

1 uxx ν2 
=	

ux 
ux,max = f(Pr) gβΔT x. √

gβΔT x 
⇒

2 ν gβΔT x3 

Grx x4ν2	 xν2 
= 
√

2f(Pr) 4 = 
√

2f(Pr) 4
δu x4 = f(Pr) ⇒ δu = f(Pr) � 

4 
.

4 gβΔT x3 gβΔTGrx/4x 

These two results are consistent with: ux,max ∝ thickness2, forced convection Δux/Δy goes as 1/
√

Rex. 

Other geometries: Raylegh­Bernard cells in inversion for GrPr greater than 1000. Solutal buoyancy too, 
dissolving salt cube. 

1 dρ 
βC = .−

ρ dC 

Special: nucleate boiling, film boiling, h vs. T with liquid coolant. 
If time: BL on rotating disk: u ∝ r, so uniform BL. Pretty cool. 
Now can calculate (estimate) heat/mass transfer coefficients for forced and natural convection, laminar 

or turbulent. (D’oh! Forgot this closing part after the muddy stuff.) 

Stream Function and Vorticity Vorticity introduced in turbulence video, measure of local rotation, 
definition: 

ω = �× �u 

2­D scalar, 3­D vector. Some formulations give 2­D NS in terms of ux, uy , ω. Also, vorticity particle 
methods: bundles of vorticity moving, combining, annihilating. 

Other application: crystal rotation in semisolid rheology. 
Stream function, for incompressible flow where � · �u = 0: 

∂Ψ ∂Ψ 
ux = 

∂y
, uy = −

∂x 

Collapses velocity components into one parameter. Look at Ψ = Ax, Ψ = By, Ψ = Ax + By, Ψ2 = x2 + y . 
Cool. 
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Gradient is normal to flow direction. Streamlines: curves of constant Ψ, parallel to flow direction. If 
spaced apart same difference in Ψ, then 

u ∝ distance between streamlines | | 

Aero­astros look out at wing and see streamline, Mech Es see structure, Mat Scis see a giant fatigue 
specimen... 

Visualizing 2­D flows, giving approximate regions of large and small velocity. DON’T CROSS THE 
STREAMS! 

Concept: flow separation, difference between jet and inlet. Breathing through nose. (D’oh! Forgot to 
mention breathing through the nose.) 

Decisions... Finish the term with the Bernoulli equation, or continuous flow reactors? Bernoulli wins the 
vote. 
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5.6 December 10, 2003: Bernoulli, Semester Wrapup 

TODO: get rooms for review sessions! 
Mechanics: 

• Review sessions: me Friday 2 PM, Albert Sunday evening. 

No muddy cards from last time. 

Bernoulli Equation W3R chap 6: control volume integral derivation based on first law of thermodynam­
ics. Interesting, I do somewhat different, based on Navier­Stokes; I like to think mine is more straightforward, 
but you can read W3R if needed. 

Also called “inviscid flow”. Motivation: tub with hole, pretty close to zero friction factor, velocity is 
infinity? No. Something other than viscosity limits it. 

Navier­Stokes, throw out viscous terms: 

D�u 
ρ = −� p + ρ�g

Dt 

Change coordinates to local streamline frame: ˆ n in direction of curvature (perpendicular s in direction of flow, ˆ
in 2­D, complicated in 3­D). 

Flow only in s­direction, s­momentum equation for �g = − gẑ: 

∂us ∂us ∂p ∂z 
ρ + us = + ρgz

∂t ∂s 
− 

∂s ∂s 

Steady­state, constant ρ: 
∂ 1 ρu2 ∂p dz2 s + 

∂s 
− ρgz = 0 

∂s ds 
Integrate along a streamline: 

1 
ρV 2 + p + ρgz = constant 

2 
In other words: 

KE + P + P E = constant 

This is the Bernoulli equation. 
Example 1: draining tub with a hole in the bottom. Set z = 0 at the bottom: PE=ρgh at top, P 

1at bottom corner is that plus atmospheric pressure, 2 ρV 2 beyond outlet (further accelerating). Potential 
energy becomes pressure ΔP = ρgh, then becomes kinetic V = 

√ 
2gh. 

Illustrate how changes with long tube h2 down from bottom: ρgh at top, P0 at base in corner, 1 ρV 2 + P12 
1at base over spout, 2 ρV 2 − ρgh2 at tube end. Three equations in three unknowns. Solves to P1 = ρgh, 

V 2 = 2g(h + h2), P1 = − ρgh2. Can also fill in the table... 
Conditions: 

• No shear or other losses (not nearly fully­developed) 

• No interaction with internal solids, etc. 

• No heat in or out, mechanical work on fluid (pumps, etc.) 

• No sudden expansion (jet−→ turbulent dissipation, separation complicates stuff) 

No turbulence • 

• No combustion (mixing−→ effective viscosity) 

Yes sudden contraction. • 

Note time­to­drain problem on final of three years ago (that was the “derive and solve a new equation” 
problem of 2000), tendency for diff eqs and thought problems... 
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Semester summary You’ve come a very long way! Mentioned linear to multiple nonlinear PDEs, un­
derstanding of solution. More generally, learned to start with a simple conservation relation: accum = in 
­ out + gen, turn into really powerful results, on macro or micro scale, for diffusion, thermal energy, mass, 
momentum, even kinetic energy. 

Covered all topics in fluid dynamics and heat and mass transfer, in MechE, ChemE, aero­astro. If want 
to go on, take graduate advanced fluid dynamics or heat/mass transfer, will be bored in undergrad class. 

Also done some computation; for more depth with or without programming experience, try 22.00J/3.021J! 
(Shameless plug...) 

Thank Albert for a terrific job as a TA! 

Last muddy questions 

•	 What is the relevance of the boundary layer thickness to the Bernoulli equation? The boundary layer 
is a region where there is quite a bit of shear, and sometimes turbulence. If it is thin relative to the size 
of the problem (e.g. relative to the diameter of the tube), then most of the fluid will have negligible 
shear. 

•	 Why such a wierd coordinate system in Bernoulli example 2? Why not just make z = 0 at the bottom 
of the tube? You could do that too, and it would work equally well, it just differs by a constant in the 
potential energy; the way we did it is just more consistent with the first example: 

Point KE P PE 
1 ∼ 0 patm ρg(h1 + h2) 
2 ∼ 0 patm + ρgh1 ρgh2 

3 ρg(h1 + h2) patm − ρgh2 ρgh2 

4 ρg(h1 + h2) patm 0 

Batch and Continuous Flow Reactors For those interested. 
Basic definitions, motivating examples. Economics: batch better for flexibility, continuous for quality 

and no setup time (always on). 
Two types: volumetric and surface reactors. Volume V, generation due to chemical reaction; we’ll discuss 

first­order A −→ B, so 
G = − kCA 

For a volume batch reactor, start with CA,in, dump into reactor, it goes: 

accum = generation 

dCA
V = − V kCA

dt 

ln(CA) = − kt + A 

CA,out = exp (− kt)
CA,in 

For mass transfer­limited surface batch reactor, say 

accum = out 

dCA,out 
V = − AhdCA

dt 

CA,out hD A 
= exp t 

CA,in 
− 

V 

Two extremes in continuous reactor behavior with flow rate Q: plug flow and perfect mixing. 
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Plug flow is like a mini­batch with tR = V/Q, draw plug in a pipe, derive: 

CA,out kV 
= exp 

CA,in 
− 

Q 

With a surface, the V s cancel, left with 

CA,out hD A 
= exp 

CA,in 
− 

Q 

Perfect mixing: in, out, gen, no accum, out at CA,out reactor conc: 

0 = QCA,in − QCA,out − kV CA,out 

CA,out = 
Q 1 

= 
CA,in Q + kV 1 + kV 

Q 

With area: 
CA,out =

1 
CA,in 1 + hD A 

Q 

Say target conversion is 0.01, given volume V , homogeneous with constant k. 

Batch: • 
1 4.6 

tR = ln(CA,in/CA,out) = 
k k 

prodection rate is 
V kV 

= 4.6 
k + tchange 4.6 + ktchange 

• Plug: 
kV kV 

Q = = 
ln(CA,in/CA,out) 4.6 

Better than batch, likely better quality too, less flexible. 

• Perfect mixing: 
kV kV 

Q = = 
CA,in/CA,out − 1 99 

Much smaller than either of the others! 

Dead zones and effective volumes!

How to tell: tracers, Peclet number.

Other examples: catalytic combustion (that dimensional analysis problem in PS3), alveoli/breathing


(continuous/batch mixed). Batch: generally better conversion in same volume (see why); continuous: con­
sistent quality, no setup time. 

Steelmaking: batch, but folk want to make continuous. 
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