3.185 Problem Set 6

Radiation, Intro to Fluid Flow

Solutions

1. Heat transfer in electrostatic levitation

(a)

For a spherical droplet (for which F;; = 0 becaus it is convex), exactly in the middle of a cube, the
viewfactors from the droplet to each side of the cube are equal. Because they form an enclosure,
those viewfactors from the droplet to each side sum to 1, so each is 1/6. Therefore, the viewfactor
to two sides is F1 = 2/6 =1/3.
Here we just use the identity:

A1Fip = AsFy
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The graph on p. 397 (curve 2) gives us the viewfactor from one plate to the other. Since these
are sides of a cube, the ratio of side length to discance between plates is 1, so the viewfactor from
the graph is 0.2.

The definition of the viewfactor Fby is the fraction of power radiated from surface two which
arrives at surface two. We have two plates radiating energy, and 20% of each arrives at the other
plate. So 20% of the total power radiated by surface 2 reaches surface 2, and Fss = 0.2.

This was straightforward application of the equation given in class:
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€ T A F a(=€) | Calculated @
Q12: | 0.5 | 800 K | #(0.005m)? 3 0.8 0.243 W
Q21: | 0.8 | 1000 K | 2 x (0.06m)? | 0.0036 | 0.5 0.594 W

Typically in these arrangements, droplet heating is by radiation, but not necessarily by the charged
plates which suspend it in place. In any case, these numbers indicate that the plates provide a
good bit more heat to the droplet than vice-versa, so the rest of the heat is likely radiated to the
environment,.

In class, we mentioned electronic, radiative and phonon conduction, so the latter two were accepted
here. (Gases can also conduct heat by motion of atoms, especially at low pressure with large mean
free path.) Phonons, however, are quantized vibrations in a lattice, and this is a liquid, so instead
we would have simple atomic collisions, not quantized particles as such. Radiation is not likely to
play a major role in metals, since the penetration depth of photons is so small (but the question
didn’t ask for magnitude, just mechanism).

Convection or heat transfer in the surrounding gas might play a role, but laser flash and other
related techniques are fast enough to capture just the conduction in the droplet, and the conduc-
tivity of gases is extremely small.



2. Radiation in Zirconia Physical Vapor Deposition

(a)

To calculate this viewfactor, we’ll let S; be the liquid zicronia disc and Sy the inner surface of
the heat shield. Then we’ll create two additional fictitious surfaces, S3 and Sy: Ss is the 20 cm-
diameter disc at the top of the heat shield, and Sy is a 20 cm-diameter disc with a 5 cm-diameter
hole in it between the zirconia and the base of the shield.

Since these four surfaces form an enclosure, we know that:
Fii+F2+ Fizs+Fiy=1

Since Sy, the zirconia, is not concave, Fi; = 0. Since S; and S4 are coplanar, none of the heat
from surface 1 reaches surface 4, so F14 = 0. Therefore,

Fis+Fiz3=1

We can get Fy3 from the graph on p. 398 of W3R, using r; = 2.5 cm, 75 = 10 cm and D = 10
cm. This gives us ro/D = 10/10 = 1 and D/r; = 10/2.5 = 4. Based on this, the graph tells us
that F13 = 05, SO F12 =0.5

Heat leaves the zirconia surface with a flux given by:
e = 60’T14

The total heat leaving the zirconia is that flux times its area. Fjo gives the fraction of that which
reaches S, and we divide that by A, to estimate the flux at Ss:

FipAjeoT!  0.5-m(2.5cm)?-0.3-5.67 x 1078 =P - (2100K)* 52OOW
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q2

Calculating Fyy is a bit more complicated than Fjs. First, we’ll create a new S5 which is the
combination of S; and Sy, a 20 cm-diameter disk at the base of the shield, which looks a lot like
S3.

Since Sy, S3 and S5 now form an enclosure, we can say:
Fos + Foz + Fp5 = 1

We can’t get Fy3 from a graph, but we can get F3> about the same way we got Fi above:
F3s + F33 + F35 = 1

Since S3 is not concave, Fs3 is zero, so Fzo =1 — F35. We can get F35 from the graph: ry =ry =
D =10 cm, so D/r; and ro/D are both one, F35 = 0.38, giving us Fzy = 0.62.

Now we can get Fy3 from:
AsFp3 = AzFsy

As is the inner area of the cylinder, 27 RL = 27(0.1m - 0.1m); As is the area of the top disk
mR* = w(0.1m)%. So Aj; is clearly half of A5, and A3/A4> = %, and

A 1
Fys = A—2F32 = 5Fi = 0.31

Since Fy; = Fy3 = 0.31 by symmetry, this leaves us with

F22 =1- F23 - F25 =1- 031 - 031 - 038



3. Shear Stress and Couette Flow
The oil kinematic viscosity of 0.00037““?2 and density of 0.85%(:850%) give a dynamic viscosity of
p=pv=0.31458¢
Because the fluid layer is so thin, cylinder curvature and weight of the fluid can be neglected. This is
therefore like having two parallel plates of area m x 36.03cm x 3.14m = 3.55m? with a fluid layer 0.1
mm thick between them.

(a) The ram (one “plate”) is moving at 0.15 m/s, and the cylinder is fixed. The shear stress is
T =pU/L = 472 N/m?, so the force required to travel at that velocity is that times the area, or
nU/ /m?, q y ,

1677 N.

(b) Now the force is mg (the mass of the ram and car times g), which is 6664 N. Divided by the area,
the shear stress is 1875 N/m?. The velocity of the ram U is thus U = 7L/u = 0.596 m/s.

4. Glass Viscosity

a) This was a straightforward Arrhenius extrapolation, like you’ve done a zillion times before in
g
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This can be made into a 2-point linear fit by taking the log of both sides:
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Subtracting gets rid of In A:
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Now solve the 1500K equation for In A:
N-s AGuis 1 N-s
InA=In{1 — = -9, In{ —
n n<00m2> 7 1500K 9.075 + n<m2>

So, A =1.14 x 10_4¥. Now just plug 1450K into the original equation:

AG s _4N=-s 20520K N-s

1450K

(b) This kind of extrapolation downward is very dangerous to do with molten glasses, as you might hit
the glass transition temperature, which would send the viscosity upward by orders of magnitude!
So, okay for this problem set, but be careful when doing this in “real life”.



5. Plate Glass Casting

For this problem, a useful analogy is that of steady-state conduction through a multilayer wall. In
that steady-state zero-generation problem, the general solution is T = Az + B, but each layer has a
different A and B. Other similarities are described below.

(a)

For flow in the z-direction with z normal to the plate, the general solution is:

gsinf

22+ Az + B.
2v

Uy =
This solution will hold in both the tin and the glass, but with different A and B, as mentioned
above.

Just as with heat conduction, where in a multilayer wall the temperatures and normal fluxes are
matched at the boundary, here the velocities and shear stresses are equal for the glass and tin at
their interface:

Ug,tin = Uz, glass; Tzx,tin = Tzz,glass-

Now things start to get ugly. We have two pairs of constants A, Brin and Agess, Bgiass for the
two layers. And we have two interface equations (part 5b), and two boundary conditions: zero
shear stress at the top of the glass, and zero velocity at the bottom of the tin.

Let’s start by setting z = 0 at the bottom of the tin, z = z1 at the tin-glass interface, and z = 22
at the top of the glass. Then we can just plug in the boundary conditions:
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2=0 = ugsn=0. (4)

Right away, the last of these gives us By, = 0. Condition 1, with only Agqss, expands to:
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Since we have Ag,ss, and condition 3 deals with Ay, and Ag,ss, we can calculate Ay, from that
boundary condition:

[ting Sin 0 A, — Hgtassg sin A
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This is the z-component of the weight of the glass-tin sandwich, divided by the tin viscosity. Now
we need just Bgjqss, which we can get from condition 2 (remembering By, = 0):
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So we have the velocity profile in the glass and tin layers:

gsin® [(—2% 4+ 2292 + 27 — 22129 22 2pglass (2122 — 27)
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Vglass Vtin Htin
gsinf
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With all of the constants, layer thicknesses, etc. inserted, this becomes:
Uglass = —547.22(ms) 122 + 2.18896s 'z + 0.762192?,
Ugin = —399017(ms) ' 2% + 1162.855 ' 2

and when graphed (which wasn’t required), this looks like:
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(d) The maximum velocities are easy, just plug the top z for each layer into the velocity equations
above:
Umaz,glass = 0.76438, Unmaz tin = 0.76383.

The average velocities are a bit less straightforward, we have to integrate the velocity over the

layer:
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Inserting the constants for each material gives:

m 10.002m m
[—182.41(ms)—1z3 +1.094457 122 + 0.762192;2} — 0.76420 2

Uqv,glass =
g 0.001m 0.001m s’

0.001m
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m
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(e) In the glass, using the thickness of the glass sheet for L, the Reynolds number is about 24, which is
teetering on the edge of instability. In the tin, it is about 1050, which would make the tin unstable
if on its own. But since it is confined by the much more viscous glass, it acts like Couette flow,
with a higher critical Reynolds number, so it can (barely) exist as a stable laminar flow.



