3.185 Problem Set 3

More diffusion

Solutions

1. W3C Problem 27.16: Outgassing from a silicone sheet in vacuum.
This is mathematically similar to problem set 2 problem 3, as long as you put x = 0 at the vacuum
surface of the silicone sheet, with  measuring the distance into the sheet toward the steel. Except this
time, the concentration of oxygen starts uniform and high, and at time ¢ = 0 the surface concentration
drops to zero. The concentrations will thus look something like this:
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The oxygen concentration in the silicone will vary with time according to the Fourier series solution to
the diffusion equation, using one-quarter period here since the flux is zero at the silicone-steel interface
(x = L/2). After a relatively short time, only the n =1 term is relevant, which is:
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We want to know when the concentration will reach 1% of C;, indicating that nearly all of the oxygen
has diffused out of the silicone and the vacuum quality will improve, so we set C/C; = 0.01 at © = L/2.
The sin of /2 is one, which makes the rest easy:
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For a 3mm (=0.3cm) thick sheet, L = 0.6cm, and diffusivity given was 10~7cm?/s, so t = 1.76 x 10°
seconds, or over 20 days! This is why polymers and oils are used very sparingly in high-vacuum
equipment: dissolved gases in them seep out for a long time and keep the pressure from dropping to
the very low levels needed, for example, in molecular beam epitaxy deposition of thin films.



2. Hydrogen diffusion through metal foil.

(a)

The flux in this diffusion-limited case is given by:
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By way of explaining where this comes from (which is not part of the “solution”), we can simplify
things by defining P* = P exp(—Q,/RT), then the equation becomes
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and we can use the equilibrium constant for the reaction Hs(g) — 2H:
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to fit it to the familiar diffusion flux equation:
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So P*is just Dy/Keq.
This table summarizes the results of the hydrogen diffusion calculations:

Metal | Py, 2O | Qp gt | P 2 |,
Nickel 1.2x 103 13850 3.8x10°8 85 x 107
Copper 1.9x 1074 17350 | 4.4x1071° | 99x107°
Aluminum 0.37 30800 3.7x1071 | 8.2x 1010

From the equation, we can look at the ratio of fluxes in two different situations, corresponding to
parts a and b of this problem:
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All of that P‘)Cf stuff is constant, so it cancels. We were told that ps, was zero, and we’re

only changing p; here, so pgp is zero too. So we get:
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We want to get half the flux, so Jy is half of J,, which when we square both sides gives us the
pressure ratio:
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So the new pressure must be one quarter of the old pressure, 0.05 atm.

Qualitatively, the flux is proportional to the difference in concentrations (kinetics). Both
sides of the foil are at equilibrium (thermodynamics), so the equilibrium constant governs the
concentration. That constant says that the concentration is proportional to the square root of
the pressure because hydrogen is diatomic in the gas and monatomic in the metal Hy;) — 2H
(thermodynamics), so the flux is proportional to the difference in the square roots of the
pressures on the two sides (mixed thermo and kinetics).



3. The FFC-Cambridge process for titanium reduction
Our assumptions really didn’t do justice to the complexity of the process, with its various electrochem-
ical complications. The driving force of voltage drop, which produces an electric field, works against
the chemistry which wants to produce oxide.

However, the basic principle of the sum of reaction and diffusion resistances still holds (plus an ad-
ditional resistance to electron conduction through the oxide), and of particular importance to this
process, the efficiency depends on the extent to which the diffusional resistance can be minimized so it
comes close to using the minimum energy required to reduce the oxide. In that sense, the thickness of
the resulting porous titanium layer (represented by Y here) is crucial; to maintain reaction limitation,
its final value must be small enough to give a small Biot number.

(a)

The two mechanisms here are diffusion and heterogeneous chemical reaction at an interface; these
operate in series. So the relevant dimensionless number is the ratio of the two resistances, which
is the (mass transfer) Biot number given by

when it is large, the reaction is fast and diffusion is slow, so the process is diffusion-limited.

The problem states that the oxygen concentration in the oxide is very uniform, and at the outer
surface of the titanium it’s zero. The maximum possible concentration in the titanium is C¢q, so
C;, the concentration in the titanium at the interface, must be between zero and C,,.

The reaction rate is proportional to the difference between C., and Cj; the diffusion flux is
proportional to C; (minus zero).

If the Biot number is small, then the reaction is slow and diffusion is fast, so C; will be close to
zero; the slow reaction results in very small C; (you can think of this as: any oxygen which gets
through the slow reaction gets rapidly diffused across the titanium, so its concentration in the
titanium is low). Conversely, if the Biot number is large, then the reaction is fast and diffusion is
slow, so there will be a big concentration difference between the two faces of the porous titanium
layer, and Cj is close to Ce,.
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(c) The concentration at z =Y is C;, and the concentration at x = 0 is zero, so the flux is:
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(d) This is the classic linear—parabolic reaction—diffusion-limited growth curve:



parabolic,
diffusion controlled

This is a neat process, and has some advantages over the current Kroll process for making titanium
(whose inventor was so disappointed with his process that he was certain something better would
come along within 5-10 years—that was 50 years ago). The energy efficiency is enormously better, but
any impurities in the TiO2 are also present in the final titanium product. Furthermore, this requires
expensive pre-processing to shape the titanium oxide into the little pellets which go on the electrodes,
and post-processing to consolidate the bits of porous titanium (which need to be thin, see the solution
preamble above) into a solid ingot.

My group is working with a group at Boston University to develop a process which purifies and
consolidates at the same time as it reduces, going from cheap granular low-purity TiO, to dense high-
purity Ti at high efficiency and all in one step. Several things could go wrong with various parts of the
process, rendering it ineffective, but if it works, it will bring down the price of titanium enormously—
and you will definitely hear about it...

4. Iron oxidation

(a) From the equation given:
Am\ 2
For iron at 1000°C, the table provided gives k, as 1.4 x 10*4%, and ¢ is 1800 seconds, so
the mass gain is 0.50551]%, or 0.050%11%2.
This is the amount of added oxygen, and there are two moles of iron oxide per three moles of

: . B T 2 moles FesO3 159.6g/mol(Fe203) PR T
oxygen molecules, so the mass of iron oxide is this times =32 -52 53.0g /mol(Oz) > which is

0.1678E¢20s

cm
The thickness is this divided by the density of 5.24_%5, so the film is 0.032 cm thick, or about
1/3mm.

(b) The k, for the Fe-1%Ti alloy is 1.6 x 10_5%, and gives a mass gain of 0.17kgm(2)2, which is
about 1/3 of that in part 4a. This is because the titanium is more reactive with the oxygen, so the
oxide film contains a disproportionate amount of titanium oxide, which has lower interdiffusivity
and grows more slowly than iron oxide.

5. Dimensional Analysis: the Shrinking Gaussian

The “Shrinking Gaussian” solution to the time-dependent diffusion equation:
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Note: substitution of g or kg for mol works just as well.

As we can see above, there are five dimensions, and three base units (mol or g or kg, m, s),
therefore, there are just two dimensionless parameters.

We want to construct 7¢ and m,, eliminating 3, D and t.

Dimension | mol | m S Dimension | mol | m S

C 1 -3 0 T 0 1 0

gt -1 2 0 B 0 0 0

D'/? 0 | 1 |-3 D~1/2 0 | -1 3
¢/ NERE; t=1/2 0 |0 |-%

Total 0 0 0 Total 0 0 0

So we have:
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Start with the solution itself:

One rearrangement should do it:
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When made dimensionless like this, the “Shrinking Gaussian” becomes a simple Gaussian with a
maximum value of 1/4/m:
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As for the width, you could define any measure of it, and give the corresponding value. One such
measure is where the Gaussian reaches 1/e of its maximum; this is relatively easy because you
just set the exponent to —1, so —72/4 = —1 and 7, = 2.

Another popular measure for Gaussian distributions is the “full width at half maximum” (FWHM).

For this, you solve:
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Either of these measures was fine.



