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Introduction

Stress-strain curves are an extremely important graphical measure of a material’s mechanical
properties, and all students of Mechanics of Materials will encounter them often. However, they
are not without some subtlety, especially in the case of ductile materials that can undergo sub-
stantial geometrical change during testing. This module will provide an introductory discussion
of several points needed to interpret these curves, and in doing so will also provide a preliminary
overview of several aspects of a material’s mechanical properties. However, this module will
not attempt to survey the broad range of stress-strain curves exhibited by modern engineering
materials (the atlas by Boyer cited in the References section can be consulted for this). Several
of the topics mentioned here — especially yield and fracture — will appear with more detail in
later modules.

“Engineering” Stress-Strain Curves

Perhaps the most important test of a material’s mechanical response is the tensile test1, in which
one end of a rod or wire specimen is clamped in a loading frame and the other subjected to
a controlled displacement δ (see Fig. 1). A transducer connected in series with the specimen
provides an electronic reading of the load P (δ) corresponding to the displacement. Alternatively,
modern servo-controlled testing machines permit using load rather than displacement as the
controlled variable, in which case the displacement δ(P ) would be monitored as a function of
load.

The engineering measures of stress and strain, denoted in this module as σe and εe respec-
tively, are determined from the measured the load and deflection using the original specimen
cross-sectional area A0 and length L0 as

P δ
σe = , εe = (1)

A0 L0

When the stress σe is plotted against the strain εe, an engineering stress-strain curve such as
that shown in Fig. 2 is obtained.

1Stress-strain testing, as well as almost all experimental procedures in mechanics of materials, is detailed by
standards-setting organizations, notably the American Society for Testing and Materials (ASTM). Tensile testing
of metals is prescribed by ASTM Test E8, plastics by ASTM D638, and composite materials by ASTM D3039.
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Figure 1: The tension test.

Figure 2: Low-strain region of the engineering stress-strain curve for annealed polycrystaline
copper; this curve is typical of that of many ductile metals.

In the early (low strain) portion of the curve, many materials obey Hooke’s law to a reason-
able approximation, so that stress is proportional to strain with the constant of proportionality
being the modulus of elasticity or Young’s modulus, denoted E:

σe = Eεe (2)

As strain is increased, many materials eventually deviate from this linear proportionality,
the point of departure being termed the proportional limit. This nonlinearity is usually as-
sociated with stress-induced “plastic” flow in the specimen. Here the material is undergoing
a rearrangement of its internal molecular or microscopic structure, in which atoms are being
moved to new equilibrium positions. This plasticity requires a mechanism for molecular mo-
bility, which in crystalline materials can arise from dislocation motion (discussed further in a
later module.) Materials lacking this mobility, for instance by having internal microstructures
that block dislocation motion, are usually brittle rather than ductile. The stress-strain curve
for brittle materials are typically linear over their full range of strain, eventually terminating in
fracture without appreciable plastic flow.

Note in Fig. 2 that the stress needed to increase the strain beyond the proportional limit
in a ductile material continues to rise beyond the proportional limit; the material requires an
ever-increasing stress to continue straining, a mechanism termed strain hardening.

These microstructural rearrangements associated with plastic flow are usually not reversed
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when the load is removed, so the proportional limit is often the same as or at least close to the
materials’s elastic limit. Elasticity is the property of complete and immediate recovery from
an imposed displacement on release of the load, and the elastic limit is the value of stress at
which the material experiences a permanent residual strain that is not lost on unloading. The
residual strain induced by a given stress can be determined by drawing an unloading line from
the highest point reached on the se - ee curve at that stress back to the strain axis, drawn with
a slope equal to that of the initial elastic loading line. This is done because the material unloads
elastically, there being no force driving the molecular structure back to its original position.

A closely related term is the yield stress, denoted σY in these modules; this is the stress
needed to induce plastic deformation in the specimen. Since it is often difficult to pinpoint the
exact stress at which plastic deformation begins, the yield stress is often taken to be the stress
needed to induce a specified amount of permanent strain, typically 0.2%. The construction used
to find this “offset yield stress” is shown in Fig. 2, in which a line of slope E is drawn from the
strain axis at εe = 0.2%; this is the unloading line that would result in the specified permanent
strain. The stress at the point of intersection with the σe − εe curve is the offset yield stress.

Figure 3 shows the engineering stress-strain curve for copper with an enlarged scale, now
showing strains from zero up to specimen fracture. Here it appears that the rate of strain
hardening2 diminishes up to a point labeled UTS, for Ultimate Tensile Strength (denoted σf in
these modules). Beyond that point, the material appears to strain soften, so that each increment
of additional strain requires a smaller stress.

Figure 3: Full engineering stress-strain curve for annealed polycrystalline copper.

The apparent change from strain hardening to strain softening is an artifact of the plotting
procedure, however, as is the maximum observed in the curve at the UTS. Beyond the yield
point, molecular flow causes a substantial reduction in the specimen cross-sectional area A, so
the true stress σt = P/A actually borne by the material is larger than the engineering stress
computed from the original cross-sectional area (σe = P/A0). The load must equal the true
stress times the actual area (P = σtA), and as long as strain hardening can increase σt enough
to compensate for the reduced area A, the load and therefore the engineering stress will continue
to rise as the strain increases. Eventually, however, the decrease in area due to flow becomes
larger than the increase in true stress due to strain hardening, and the load begins to fall. This

2The strain hardening rate is the slope of the stress-strain curve, also called the tangent modulus.
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is a geometrical effect, and if the true stress rather than the engineering stress were plotted no
maximum would be observed in the curve.

At the UTS the differential of the load P is zero, giving an analytical relation between the
true stress and the area at necking:

dA dσt
P = σtA→ dP = 0 = σtdA+Adσt → − = (3)

A σt

The last expression states that the load and therefore the engineering stress will reach a maxi-
mum as a function of strain when the fractional decrease in area becomes equal to the fractional
increase in true stress.

Even though the UTS is perhaps the materials property most commonly reported in tensile
tests, it is not a direct measure of the material due to the influence of geometry as discussed
above, and should be used with caution. The yield stress σY is usually preferred to the UTS in
designing with ductile metals, although the UTS is a valid design criterion for brittle materials
that do not exhibit these flow-induced reductions in cross-sectional area.

The true stress is not quite uniform throughout the specimen, and there will always be
some location - perhaps a nick or some other defect at the surface - where the local stress is
maximum. Once the maximum in the engineering curve has been reached, the localized flow at
this site cannot be compensated by further strain hardening, so the area there is reduced further.
This increases the local stress even more, which accelerates the flow further. This localized and
increasing flow soon leads to a “neck” in the gage length of the specimen such as that seen in
Fig. 4.

Figure 4: Necking in a tensile specimen.

Until the neck forms, the deformation is essentially uniform throughout the specimen, but
after necking all subsequent deformation takes place in the neck. The neck becomes smaller and
smaller, local true stress increasing all the time, until the specimen fails. This will be the failure
mode for most ductile metals. As the neck shrinks, the nonuniform geometry there alters the
uniaxial stress state to a complex one involving shear components as well as normal stresses.
The specimen often fails finally with a “cup and cone” geometry as seen in Fig. 5, in which
the outer regions fail in shear and the interior in tension. When the specimen fractures, the
engineering strain at break — denoted εf — will include the deformation in the necked region
and the unnecked region together. Since the true strain in the neck is larger than that in the
unnecked material, the value of εf will depend on the fraction of the gage length that has necked.
Therefore, εf is a function of the specimen geometry as well as the material, and thus is only a
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crude measure of material ductility.

Figure 5: Cup-and-cone fracture in a ductile metal.

Figure 6 shows the engineering stress-strain curve for a semicrystalline thermoplastic. The
response of this material is similar to that of copper seen in Fig. 3, in that it shows a proportional
limit followed by a maximum in the curve at which necking takes place. (It is common to term
this maximum as the yield stress in plastics, although plastic flow has actually begun at earlier
strains.)

Figure 6: Stress-strain curve for polyamide (nylon) thermoplastic.

The polymer, however, differs dramatically from copper in that the neck does not continue
shrinking until the specimen fails. Rather, the material in the neck stretches only to a “natural
draw ratio” which is a function of temperature and specimen processing, beyond which the
material in the neck stops stretching and new material at the neck shoulders necks down. The
neck then propagates until it spans the full gage length of the specimen, a process called drawing.
This process can be observed without the need for a testing machine, by stretching a polyethylene
“six-pack holder,” as seen in Fig. 7.

Not all polymers are able to sustain this drawing process. As will be discussed in the
next section, it occurs when the necking process produces a strengthened microstructure whose
breaking load is greater than that needed to induce necking in the untransformed material just
outside the neck.
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Figure 7: Necking and drawing in a 6-pack holder.

“True” Stress-Strain Curves

As discussed in the previous section, the engineering stress-strain curve must be interpreted with
caution beyond the elastic limit, since the specimen dimensions experience substantial change
from their original values. Using the true stress σt = P/A rather than the engineering stress
σe = P/A0 can give a more direct measure of the material’s response in the plastic flow range.
A measure of strain often used in conjunction with the true stress takes the increment of strain
to be the incremental increase in displacement dL divided by the current length L:

dL
dεt = → εt =

l

∫ L 1 L
dL = ln (4)

l0 L L0

This is called the “true” or “logarithmic” strain.
During yield and the plastic-flow regime following yield, the material flows with negligible

change in volume; increases in length are offset by decreases in cross-sectional area. Prior to
necking, when the strain is still uniform along the specimen length, this volume constraint can
be written:

L A
dV = 0→ AL = A0L0 → = (5)

L0 A0

The ratio L/L0 is the extension ratio, denoted as λ. Using these relations, it is easy to develop
relations between true and engineering measures of tensile stress and strain (see Prob. 2):

σt = σe (1 + εe) = σeλ, εt = ln (1 + εe) = ln λ (6)

These equations can be used to derive the true stress-strain curve from the engineering curve, up
to the strain at which necking begins. Figure 8 is a replot of Fig. 3, with the true stress-strain
curve computed by this procedure added for comparison.

Beyond necking, the strain is nonuniform in the gage length and to compute the true stress-
strain curve for greater engineering strains would not be meaningful. However, a complete true
stress-strain curve could be drawn if the neck area were monitored throughout the tensile test,
since for logarithmic strain we have

L A L A
= → εt = ln = ln (7)

L0 A0 L0 A0

Ductile metals often have true stress-strain relations that can be described by a simple
power-law relation of the form:
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Figure 8: Comparison of engineering and true stress-strain curves for copper. An arrow indicates
the position on the “true” curve of the UTS on the engineering curve.

σ = Aεnt t → log σt = logA+ n log εt (8)

Figure 9 is a log-log plot of the true stress-strain data3 for copper from Fig. 8 that demonstrates
this relation. Here the parameter n = 0.474 is called the strain hardening parameter, useful as a
measure of the resistance to necking. Ductile metals at room temperature usually exhibit values
of n from 0.02 to 0.5.

Figure 9: Power-law representation of the plastic stress-strain relation for copper.

A graphical method known as the “Considère construction” uses a form of the true stress-
strain curve to quantify the differences in necking and drawing from material to material. This
method replots the tensile stress-strain curve with true stress σt as the ordinate and extension
ratio λ = L/L0 as the abscissa. From Eqn. 6, the engineering stress σe corresponding to any

3Here percent strain was used for εt; this produces the same value for n but a different A than if full rather
than percentage values were used.
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value of true stress σt is slope of a secant line drawn from origin (λ = 0, not λ = 1) to intersect
the σt − λ curve at σt.

Figure 10: Considère construction. (a) True stress-strain curve with no tangents - no necking or
drawing. (b) One tangent - necking but not drawing. (c) Two tangents - necking and drawing.

Among the many possible shapes the true stress-strain curves could assume, let us consider
the concave up, concave down, and sigmoidal shapes shown in Fig. 10. These differ in the
number of tangent points that can be found for the secant line, and produce the following yield
characteristics:

(a) No tangents: Here the curve is always concave upward as in part (a) of Fig. 10, so the
slope of the secant line rises continuously. Therefore the engineering stress rises as well,
without showing a yield drop. Eventually fracture intercedes, so a true stress-strain curve
of this shape identifies a material that fractures before it yields.

(b) One tangent: The curve is concave downward as in part (b) of Fig. 10, so a secant line
reaches a tangent point at λ = λY . The slope of the secant line, and therefore the
engineering stress as well, begins to fall at this point. This is then the yield stress σY seen
as a maximum in stress on a conventional stress-strain curve, and λY is the extension ratio
at yield. The yielding process begins at some adventitious location in the gage length of
the specimen, and continues at that location rather than being initiated elsewhere because
the secant modulus has been reduced at the first location. The specimen is now flowing at
a single location with decreasing resistance, leading eventually to failure. Ductile metals
such as aluminum fail in this way, showing a marked reduction in cross sectional area at
the position of yield and eventual fracture.

(c) Two tangents: For sigmoidal stress-strain curves as in part (c) of Fig. 10, the engineering
stress begins to fall at an extension ration λY , but then rises again at λd. As in the previous
one-tangent case, material begins to yield at a single position when λ = λY , producing
a neck that in turn implies a nonuniform distribution of strain along the gage length.
Material at the neck location then stretches to λd, after which the engineering stress there
would have to rise to stretch it further. But this stress is greater than that needed to
stretch material at the edge of the neck from λY to λd, so material already in the neck
stops stretching and the neck propagates outward from the initial yield location. Only
material within the neck shoulders is being stretched during propagation, with material
inside the necked-down region holding constant at λd, the material’s “natural draw ratio,”
and material outside holding at λY . When all the material has been drawn into the necked
region, the stress begins to rise uniformly in the specimen until eventually fracture occurs.

The increase in strain hardening rate needed to sustain the drawing process in semicrys-
talline polymers arises from a dramatic transformation in the material’s microstructure. These
materials are initially “spherulitic,” containing flat lamellar crystalline plates, perhaps 10 nm
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thick, arranged radially outward in a spherical domain. As the induced strain increases, these
spherulites are first deformed in the straining direction. As the strain increases further, the
spherulites are broken apart and the lamellar fragments rearranged with a dominantly axial
molecular orientation to become what is known as the fibrillar microstructure. With the strong
covalent bonds now dominantly lined up in the load-bearing direction, the material exhibits
markedly greater strengths and stiffnesses — by perhaps an order of magnitude — than in the
original material. This structure requires a much higher strain hardening rate for increased
strain, causing the upturn and second tangent in the true stress-strain curve.

Strain energy

The area under the σe − εe curve up to a given value of strain is the total mechanical energy
per unit volume consumed by the material in straining it to that value. This is easily shown as
follows:

U∗
1

=
V

∫
P dL =

∫ L P dL ε

= σ dε (9)
0 A0 L0

∫
0

In the absence of molecular slip and other mechanisms for energy dissipation, this mechanical
energy is stored reversibly within the material as strain energy. When the stresses are low enough
that the material remains in the elastic range, the strain energy is just the triangular area in
Fig. 11:

Figure 11: Strain energy = area under stress-strain curve.

Note that the strain energy increases quadratically with the stress or strain; i.e. that as the
strain increases the energy stored by a given increment of additional strain grows as the square
of the strain. This has important consequences, one example being that an archery bow cannot
be simply a curved piece of wood to work well. A real bow is initially straight, then bent when
it is strung; this stores substantial strain energy in it. When it is bent further on drawing the
arrow back, the energy available to throw the arrow is very much greater than if the bow were
simply carved in a curved shape without actually bending it.

Figure 12 shows schematically the amount of strain energy available for two equal increments
of strain ∆ε, applied at different levels of existing strain.

The area up to the yield point is termed the modulus of resilience, and the total area up to
fracture is termed the modulus of toughness; these are shown in Fig. 13. The term “modulus”
is used because the units of strain energy per unit volume are N-m/m3 or N/m2, which are the
same as stress or modulus of elasticity. The term “resilience” alludes to the concept that up
to the point of yielding, the material is unaffected by the applied stress and upon unloading
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Figure 12: Energy associated with increments of strain

Table 1: Energy absorption of various materials.

Material Maximum Maximum Modulus of Density Max. Energy
Strain, % Stress, MPa Toughness, MJ/m3 kg/m3 J/kg

Ancient Iron 0.03 70 0.01 7,800 1.3
Modern spring steel 0.3 700 1.0 7,800 130
Yew wood 0.3 120 0.5 600 900
Tendon 8.0 70 2.8 1,100 2,500
Rubber 300 7 10.0 1,200 8,000

will return to its original shape. But when the strain exceeds the yield point, the material is
deformed irreversibly, so that some residual strain will persist even after unloading. The modulus
of resilience is then the quantity of energy the material can absorb without suffering damage.
Similarly, the modulus of toughness is the energy needed to completely fracture the material.
Materials showing good impact resistance are generally those with high moduli of toughness.

Figure 13: Moduli of resilience and toughness.

Table 14 lists energy absorption values for a number of common materials. Note that natural
and polymeric materials can provide extremely high energy absorption per unit weight.

During loading, the area under the stress-strain curve is the strain energy per unit volume
absorbed by the material. Conversely, the area under the unloading curve is the energy released
by the material. In the elastic range, these areas are equal and no net energy is absorbed. But

4J.E. Gordon, Structures, or Why Things Don’t Fall Down, Plenum Press, New York, 1978.
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if the material is loaded into the plastic range as shown in Fig. 14, the energy absorbed exceeds
the energy released and the difference is dissipated as heat.

Figure 14: Energy loss = area under stress-strain loop.

Compression

The above discussion is concerned primarily with simple tension, i.e. uniaxial loading that
increases the interatomic spacing. However, as long as the loads are sufficiently small (stresses
less than the proportional limit), in many materials the relations outlined above apply equally
well if loads are placed so as to put the specimen in compression rather than tension. The
expression for deformation and a given load δ = PL/AE applies just as in tension, with negative
values for δ and P indicating compression. Further, the modulus E is the same in tension and
compression to a good approximation, and the stress-strain curve simply extends as a straight
line into the third quadrant as shown in Fig. 15.

Figure 15: Stress-strain curve in tension and compression.

There are some practical difficulties in performing stress-strain tests in compression. If
excessively large loads are mistakenly applied in a tensile test, perhaps by wrong settings on the
testing machine, the specimen simply breaks and the test must be repeated with a new specimen.
But in compression, a mistake can easily damage the load cell or other sensitive components,
since even after specimen failure the loads are not necessarily relieved.

Specimens loaded cyclically so as to alternate between tension and compression can exhibit
hysteresis loops if the loads are high enough to induce plastic flow (stresses above the yield
stress). The enclosed area in the loop seen in Fig. 16 is the strain energy per unit volume
released as heat in each loading cycle. This is the well-known tendency of a wire that is being
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bent back and forth to become quite hot at the region of plastic bending. The temperature of
the specimen will rise according to the magnitude of this internal heat generation and the rate
at which the heat can be removed by conduction within the material and convection from the
specimen surface.

Figure 16: Hysteresis loop.

Specimen failure by cracking is inhibited in compression, since cracks will be closed up rather
than opened by the stress state. A number of important materials are much stronger in com-
pression than in tension for this reason. Concrete, for example, has good compressive strength
and so finds extensive use in construction in which the dominant stresses are compressive. But
it has essentially no strength in tension, as cracks in sidewalks and building foundations attest:
tensile stresses appear as these structures settle, and cracks begin at very low tensile strain in
unreinforced concrete.
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Problems

1. The figure below shows the engineering stress-strain curve for pure polycrystalline alu-
minum; the numerical data for this figure are in the file aluminum.txt, which can be
imported into a spreadsheet or other analysis software. For this material, determine (a)
Young’s modulus, (b) the 0.2% offset yield strength, (c) the Ultimate Tensile Strength
(UTS), (d) the modulus of resilience, and (e) the modulus of toughness.

2. Develop the relations given in Eqn. 6:

σt = σe (1 + εe) = σeλ, εt = ln (1 + εe) = ln λ
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Prob. 1

3. Using the relations of Eqn. 6, plot the true stress-strain curve for aluminum (using data
from Prob.1) up to the strain of neck formation.

4. Replot the the results of the previous problem using log-log axes as in Fig. 9 to determine
the parameters A and n in Eqn. 8 for aluminum.

5. Using Eqn. 8 with parameters A = 800 MPa, n = 0.2, plot the engineering stress-strain
curve up to a strain of εe = 0.4. Does the material neck? Explain why the curve is or is
not valid at strains beyond necking.

6. Using the parameters of the previous problem, use the condition (dσe/dεe)neck = 0 to show
that the engineering strain at necking is εe,neck = 0.221.

7. Use a Considère construction (plot σt vs. λ, as in Fig. 10 ) to verify the result of the
previous problem.

8. Elastomers (rubber) have stress-strain relations of the form

E 1
σe = λ− ,

3

(
λ2

)

where E is the initial modulus. Use the Considère construction to show whether this
material will neck, or draw.

9. Show that a power-law material (one obeying Eqn. 8) necks when the true strain εt becomes
equal to the strain-hardening exponent n.

10. Show that the UTS (engineering stress at incipient necking) for a power-law material
(Eqn. 8) is

Ann
σf =

en

11. Show that the strain energy U =
∫
σ dε can be computed using either engineering or true

values of stress and strain, with equal result.
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12. Show that the strain energy needed to neck a power-law material (Eqn.8) is

Ann+1
U =

n+ 1
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