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Introduction

The kinematic relations described in Module 8 are purely geometric, and do not involve consid-
erations of material behavior. The equilibrium relations to be discussed in this module have this
same independence from the material. They are simply Newton's law of motion, stating that
in the absence of acceleration all of the forces acting on a body (or a piece of it) must balance.
This allows us to state how the stress within a body, but evaluated just below the surface, is
related to the external force applied to the surface. It also governs how the stress varies from
position to position within the body.

Cauchy stress

Figure 1: Traction vector.

In earlier modules, we expressed the normal stress as force per unit area acting perpendicu-
larly to a selected area, and a shear stress was a force per unit area acting transversely to the
area. To generalize this concept, consider the situation depicted in Fig. 1, in which a traction
vector T acts on an arbitrary plane within or on the external boundary of the body, and at an
arbitrary direction with respect to the orientation of the plane. The traction is a simple force
vector having magnitude and direction, but its magnitude is expressed in terms of force per unit
of area:

T = lim
∆→0

(
∆F

∆

)
(1)
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where ∆ is the magnitude of the area on which ∆F acts. The Cauchy1 stresses, which are
a generalization of our earlier definitions of stress, are the forces per unit area acting on the
Cartesian , , and  planes to balance the traction. In two dimensions this balance can be
written by drawing a simple free body diagram with the traction vector acting on an area of
arbitrary size  (Fig. 2), remembering to obtain the forces by multiplying by the appropriate
area.

σ( cos θ) + τ( sin θ) = 

τ( cos θ) + σ( sin θ) = 

Canceling the factor , this can be written in matrix form as

"
σ τ
τ σ

#(
cos θ

(2)
θ

)
=

(


sin 

)

Figure 2: Cauchy stress.

Example 1

Figure 3: Constant pressure on internal circular boundary.

Consider a circular cavity containing an internal pressure . The components of the traction vector are
then  = − cos θ,  = − sin θ. The Cartesian Cauchy stresses in the material at the boundary must
then satisfy the relations

σ cos θ + τ sin θ = − cos θ

1Baron Augustin-Louis Cauchy (1789{1857) was a prolific French engineer and mathematician.
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τ cos θ + σ sin θ = − sin θ

At θ = 0, σ = −σ = τ = 0; at θ = π/2, σ = −σ = τ = 0. The shear stress τ vanishes

for θ = 0 or π/2; in Module 10 it will be seen that the normal stresses σ and σ are therefore principal

stresses at those points.

The vector (cos θ, sin θ) on the left hand side of Eqn. 2 is also the vector n̂ of direction cosines
of the normal to the plane on which the traction acts, and serves to define the orientation of this
plane. This matrix equation, which is sometimes called Cauchy's relation, can be abbreviated
as

[σ] n̂ = T (3)

The brackets here serve as a reminder that the stress is being written as the square matrix of
Eqn. 2 rather than in pseudovector form. This relation serves to define the stress concept as an
entity that relates the traction (a vector) acting on an arbitrary surface to the orientation of the
surface (another vector). The stress is therefore of a higher degree of abstraction than a vector,
and is technically a second-rank tensor. The difference between vectors (first-rank tensors) and
second-rank tensors shows up in how they transform with respect to coordinate rotations, which
is treated in Module 10. As illustrated by the previous example, Cauchy's relation serves both
to define the stress and to compute its magnitude at boundaries where the tractions are known.

Figure 4: Cartesian Cauchy stress components in three dimensions.

In three dimensions, the matrix form of the stress state shown in Fig. 4 is the symmetric
3× 3 array obtained by an obvious extension of the one in Eqn. 2:

[σ] = σ =

2
σ τ τ6
τ σ τ4  

3

τ τ σ

7
(4)5

The element in the  row and the  column of this matrix is the stress on the  face in the
 direction. Moment equilibrium requires that the stress matrix be symmetric, so the order of
subscripts of the off-diagonal shearing stresses is immaterial.
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Differential governing equations

Determining the variation of the stress components as functions of position within the interior of
a body is obviously a principal goal in stress analysis. This is a type of boundary value problem
often encountered in the theory of differential equations, in which the gradients of the variables,
rather than the explicit variables themselves, are specified. In the case of stress, the gradients
are governed by conditions of static equilibrium: the stresses cannot change arbitrarily between
two points  and , or the material between those two points may not be in equilibrium.

Figure 5: Traction vector T acting on differential area  with direction cosines n̂.

To develop this idea formally, we require that the integrated value of the surface traction T
over the surface  of an arbitrary volume element  within the material (see Fig. 5) must sum
to zero in order to maintain static equilibrium :

0 =

Z
T  =



Z
[σ] n̂ 



Here we assume the lack of gravitational, centripetal, or other \body" forces acting on material
within the volume. The surface integral in this relation can be converted to a volume integral
by Gauss' divergence theorem2:

Z
r [σ]  = 0



Since the volume  is arbitrary, this requires that the integrand be zero:

r [σ] = 0 (5)

For Cartesian problems in three dimensions, this expands to:

∂σ ∂τ
+  + ∂τ = 0  

∂τ ∂σ
+  ∂τ

+  = 0 (6)  
∂τ ∂τ

+  + ∂σ = 0  

Using index notation, these can be written:

σ = 0 (7)

2Gauss' Theorem states that
R

^  = ∇


R
  where  is a scalar, vector, or tensor quantity.


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Or in pseudovector-matrix form, we can write

σ
2  0 0 0   3 σ

  

8 9

0  0  0 
 

>>>



>


σ

>>>>>> 8 9
> 0

6 < =>>
>

=
<>
0
=>7

(8)4
τ

0 0    0  

5
>>> 

τx
τ

>>>>>
> >: 0> ;

>> >

Noting that the differential operator matrix in the bra

:>

ckets is

>;

just the transform of the one that
appeared in Eqn. 7 of Module 8, we can write this as:

LTσ = 0 (9)

Example 2

It isn't hard to come up with functions of stress that satisfy the equilibrium equations; any constant
will do, since the stress gradients will then be identically zero. The catch is that they must satisfy the
boundary conditions as well, and this complicates things considerably. Later modules will outline several
approaches to solving the equations directly, but in some simple cases a solution can be seen by inspection.

Figure 6: A tensile specimen.

Consider a tensile specimen subjected to a load  as shown in Fig. 6. A trial solution that certainly
satisfies the equilibrium equations is

 0 0
[σ] =

2

0 0 0
0 0 0

3

where  is a constant we must choose so as to sa

4

tisfy the bo

5

undary conditions. To maintain horizontal

equilibrium in the free-body diagram of Fig. 6(b), it is immediately obvious that  =  , or σ =  = .

This familiar relation was used in Module 1 to define the stress, but we see here that it can be viewed as

a consequence of equilibrium considerations rather than a basic definition.

Problems

1. Determine whether the following stress state satisfies equilibrium:

[σ] =

"
232 −223

−223 4

#

2. Develop the two-dimensional form of the Cartesian equilibrium equations by drawing a
free-body diagram of an infinitesimal section:
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Prob. 2

3. Use the free body diagram of the previous problem to show that τ = τ.

4. Use a free-body diagram approach to show that in polar coordinates the equilibrium equa-
tions are

∂σ 1 ∂τrθ σ − σθ
+ + = 0

  ∂θ 

∂τrθ 1 ∂σθ τrθ
+ + 2 = 0

  ∂θ 

5. Develop the above equations for equilibrium in polar coordinates by transforming the
Cartesian equations using

 =  cos θ

 =  sin θ

6. The Airy stress function φ( ) is defined such that the Cartesian Cauchy stresses are

2φ 2φ 2φ
σ = , σ = , τ = −

2 2 

Show that the stresses obtained from this procedure satisfy the equilibrium equations.
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