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Introduction

The Introduction to Elastic Response Module introduced two very important material proper-
ties, the ultimate tensile strength σf and the Young’s modulus E. To the effective mechanical
designer, these aren’t just numerical parameters that are looked up in tables and plugged into
equations. The very nature of the material is reflected in these properties, and designers who
try to function without a sense of how the material really works are very apt to run into trou-
ble. Whenever practical in these modules, we’ll make an effort to put the material’s mechanical
properties in context with its processing and microstructure. This module will describe how for
most engineering materials the modulus is controlled by the atomic bond energy function.
For most materials, the amount of stretching experienced by a tensile specimen under a

small fixed load is controlled in a relatively simple way by the tightness of the chemical bonds
at the atomic level, and this makes it possible to relate stiffness to the chemical architecture of
the material. This is in contrast to more complicated mechanical properties such as fracture,
which are controlled by a diverse combination of microscopic as well as molecular aspects of
the material’s internal structure and surface. Further, the stiffness of some materials — notably
rubber — arises not from bond stiffness but from disordering or entropic factors. Some principal
aspects of these atomistic views of elastic response are outlined in the sections to follow.

Energetic effects

Chemical bonding between atoms can be viewed as arising from the electrostatic attraction
between regions of positive and negative electronic charge. Materials can be classified based on
the nature of these electrostatic forces, the three principal classes being

1. Ionic materials, such as NaCl, in which an electron is transferred from the less electroneg-
ative element (Na) to the more electronegative (Cl). The ions therefore differ by one
electronic charge and are thus attracted to one another. Further, the two ions feel an at-
traction not only to each other but also to other oppositely charged ions in their vicinity;
they also feel a repulsion from nearby ions of the same charge. Some ions may gain or lose
more than one electron.

2. Metallic materials, such as iron and copper, in which one or more loosely bound outer
electrons are released into a common pool which then acts to bind the positively charged
atomic cores.
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3. Covalent materials, such as diamond and polyethylene, in which atomic orbitals overlap
to form a region of increased electronic charge to which both nuclei are attracted. This
bond is directional, with each of the nuclear partners in the bond feeling an attraction to
the negative region between them but not to any of the other atoms nearby.

In the case of ionic bonding, Coulomb’s law of electrostatic attraction can be used to develop
simple but effective relations for the bond stiffness. For ions of equal charge e the attractive
force fattr can be written:

Ce2
fattr = (1)

r2

Here C is a conversion factor; For e in Coulombs, C = 8.988 × 109 N-m2/Coul2. For singly
ionized atoms, e = 1.602× 10−19 Coul is the charge on an electron. The energy associated with
the Coulombic attraction is obtained by integrating the force, which shows that the bond energy
varies inversely with the separation distance:
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Uattr =

∫
−Ce

fattr dr = (2)
r

where the energy of atoms at infinite separation is taken as zero.

Figure 1: The interpenetrating cubic NaCl lattice.

If the material’s atoms are arranged as a perfect crystal, it is possible to compute the elec-
trostatic binding energy field in considerable detail. In the interpenetrating cubic lattice of the
ionic NaCl structure shown in Fig. 1, for instance, each ion feels attraction to oppositely charged
neighbors and repulsion from equally charged ones. A particular sodium atom is surrounded by√
6 Cl− ions at a distance r, 12 Na+ ions at a distance r 2, 8 Cl− ions at a distance r

√
3, etc.

The total electronic field sensed by the first sodium ion is then:
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where A = 1.747558 · · · is the result of the previous series, called the Madelung constant1. Note
that it is not sufficient to consider only nearest-neighbor attractions in computing the bonding
energy; in fact the second term in the series is larger in magnitude than the first. The specific
value for the Madelung constant is determined by the crystal structure, being 1.763 for CsCl
and 1.638 for cubic ZnS.
At close separation distances, the attractive electrostatic force is balanced by mutual repul-

sion forces that arise from interactions between overlapping electron shells of neighboring ions;
this force varies much more strongly with the distance, and can be written:

B
Urep = (4)

rn

Compressibility experiments have determined the exponent n to be 7.8 for the NaCl lattice, so
this is a much steeper function than Uattr.

Figure 2: The bond energy function.

As shown in Fig. 2, the total binding energy of one ion due to the presence of all others is
then the sum of the attractive and repulsive components:

U = −
ACe2

r
+
B

rn
(5)

Note that the curve is anharmonic (not shaped like a sine curve), being more flattened out at
larger separation distances. The system will adopt a configuration near the position of lowest
energy, computed by locating the position of zero slope in the energy function:

dU
(f)r=r =0

(
dr

)
r=r0

=

(
ACe2

r2
−
nB

rn+1

)
r=r0

= 0

ro =

(
nB

ACe2

) 1
n−1

(6)

The range for n is generally 5–12, increasing as the number of outer-shell electrons that cause
the repulsive force.

1C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, New York, 1966. The Madelung series
does not converge smoothly, and this text includes some approaches to computing the sum.
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Example 1

Figure 3: Simple tension applied to crystal face.

In practice the n and B parameters in Eqn. 5 are determined from experimental measurements, for
instance by using a combination of X-ray diffraction to measure r0 and elastic modulus to infer the
slope of the U(r) curve. As an illustration of this process, picture a tensile stress σ applied to a unit
area of crystal (A = 1) as shown in Fig. 3, in a direction perpendicular to the crystal cell face. (The
[100] direction on the (100) face, using crystallographic notation2.) The total force on this unit area is
numerically equal to the stress: F = σA = σ.
If the interionic separation is r0, there will be 1/r

2
0 ions on the unit area, each being pulled by a force

f . Since the total force F is just f times the number of ions, the stress can then be written

1
σ = F = f

r20

When the separation between two adjacent ions is increased by an amount δ, the strain is ε = δ/r0.
The differential strain corresponding to a differential displacement is then

dr
dε =

r0

The elastic modulus E is now the ratio of stress to strain, in the limit as the strain approaches zero:

dσ
E =

dε

∣∣∣∣
ε→0

=
1

r0

df

dr
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r→r0

=
1

r0

d

dr

(
ACe2

r2
−
nB

rn+1

)∣
−1

∣
r→r0

Using B = ACe2rn0 /n from Eqn. 6 and simplifying,

∣∣

(n− 1)ACe2
E =

r40

Note the very strong dependence of E on r0, which in turn reflects the tightness of the bond. If E and
r0 are known experimentally, n can be determined. For NaCl, E = 3× 1010 N/m2; using this along with
the X-ray diffraction value of r0 = 2.82× 10−10 m, we find n = 1.47.

Using simple tension in this calculation is not really appropriate, because when a material is stretched

in one direction, it will contract in the transverse directions. This is the Poisson effect, which will be

treated in a later module. Our tension-only example does not consider the transverse contraction, and

the resulting value of n is too low. A better but slightly more complicated approach is to use hydrostatic

2See the Module on Crystallographic Notation for a review of this nomenclature.
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compression, which moves all the ions closer to one another. Problem 3 outlines this procedure, which

yields values of n in the range of 5–12 as mentioned earlier.

Figure 4: Bond energy functions for aluminum and tungsten.

The stiffnesses of metallic and covalent systems will be calculated differently than the method
used above for ionic crystals, but the concept of electrostatic attraction applies to these non-ionic
systems as well. As a result, bond energy functions of a qualitatively similar nature result from
all these materials. In general, the “tightness” of the bond, and hence the elastic modulus E, is
related to the curvature of the bond energy function. Steeper bond functions will also be deeper
as a rule, so that within similar classes of materials the modulus tends to correlate with the energy
needed to rupture the bonds, for instance by melting. Materials such as tungsten that fill many
bonding and few antibonding orbitals have very deep bonding functions3, with correspondingly
high stiffnesses and melting temperatures, as illustrated in Fig. 4. This correlation is obvious
in Table 1, which lists the values of modulus for a number of metals, along with the values of
melting temperature Tm and melting energy ΔH.

Table 1: Modulus and bond strengths for transition metals.

Material E Tm ΔH αL
GPa (Mpsi) ◦C kJ/mol ×10−6,◦ C−1

Pb 14 (2) 327 5.4 29
Al 69 (10) 660 10.5 22
Cu 117 (17) 1084 13.5 17
Fe 207 (30) 1538 15.3 12
W 407 (59) 3410 32 4.2

The system will generally have sufficient thermal energy to reside at a level somewhat above
the minimum in the bond energy function, and will oscillate between the two positions labeled A
and B in Fig. 5, with an average position near r0. This simple idealization provides a rationale for
why materials expand when the temperature is raised. As the internal energy is increased by the

3A detailed analysis of the cohesive energies of materials is an important topic in solid state physics; see for
example F. Seitz, The Modern Theory of Solids, McGraw-Hill, 1940.
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addition of heat, the system oscillates between the positions labeled A′ and B′ with an average
separation distance r′0. Since the curve is anharmonic, the average separation distance is now
greater than before, so the material has expanded or stretched. To a reasonable approximation,
the relative thermal expansion ΔL/L is often related linearly to the temperature rise ΔT , and
we can write:

ΔL

L
= εT = αLΔT (7)

where εT is a thermal strain and the constant of proportionality αL is the coefficient of linear
thermal expansion. The expansion coefficient αL will tend to correlate with the depth of the
energy curve, as is seen in Table 1.

Figure 5: Anharmonicity of the bond energy function.

Example 2

A steel bar of length L and cross-sectional area A is fitted snugly between rigid supports as shown in
Fig. 6. We wish to find the compressive stress in the bar when the temperature is raised by an amount
ΔT .

Figure 6: Bar between rigid supports.

If the bar were free to expand, it would increase in length by an amount given by Eqn. 7. Clearly,
the rigid supports have to push on the bar – i.e. put in into compression – to suppress this expansion.
The magnitude of this thermally induced compressive stress could be found by imagining the material
free to expand, then solving σ = EεT for the stress needed to “push the material back” to its unstrained
state. Equivalently, we could simply set the sum of a thermally induced strain and a mechanical strain
εσ to zero:

σ
ε = εσ + εT =

E
+ αLΔT = 0
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σ = −αLEΔT

The minus sign in this result reminds us that a negative (compressive) stress is induced by a positive

temperature change (temperature rises.)

Example 3

A glass container of stiffness E and thermal expansion coefficient αL is removed from a hot oven and
plunged suddenly into cold water. We know from experience that this “thermal shock” could fracture
the glass, and we’d like to see what materials parameters control this phenomenon. The analysis is very
similar to that of the previous example.
In the time period just after the cold-water immersion, before significant heat transfer by conduction

can take place, the outer surfaces of the glass will be at the temperature of the cold water while the
interior is still at the temperature of the oven. The outer surfaces will try to contract, but are kept from
doing so by the still-hot interior; this causes a tensile stress to develop on the surface. As before, the
stress can be found by setting the total strain to zero:

σ
ε = εσ + εT = + αLΔT = 0

E

σ = −αLEΔT

Here the temperature change ΔT is negative if the glass is going from hot to cold, so the stress is positive
(tensile). If the glass is not to fracture by thermal shock, this stress must be less than the ultimate tensile
strength σf ; hence the maximum allowable temperature difference is

σf
−ΔTmax =

αLE

To maximize the resistance to thermal shock, the glass should have as low a value of αLE as possible.

“Pyrex” glass was developed specifically for improved thermal shock resistance by using boron rather

than soda and lime as process modifiers; this yields a much reduced value of αL.

Material properties for a number of important structural materials are listed in the Module
on Material Properties. When the column holding Young’s Modulus is plotted against the
column containing the Thermal Expansion Coefficients (using log-log coordinates), the graph
shown in Fig. 7 is obtained. Here we see again the general inverse relationship between stiffness
and thermal expansion, and the distinctive nature of polymers is apparent as well.
Not all types of materials can be described by these simple bond-energy concepts: in-

tramolecular polymer covalent bonds have energies entirely comparable with ionic or metallic
bonds, but most common polymers have substantially lower moduli than most metals or ce-
ramics. This is due to the intermolecular bonding in polymers being due to secondary bonds
which are much weaker than the strong intramolecular covalent bonds. Polymers can also have
substantial entropic contributions to their stiffness, as will be described below, and these effects
do not necessarily correlate with bond energy functions.

Entropic effects

The internal energy as given by the function U(r) is sufficient to determine the atomic positions
in many engineering materials; the material “wants” to minimize its internal energy, and it
does this by optimizing the balance of attractive and repulsive electrostatic bonding forces.
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Figure 7: Correlation of stiffness and thermal expansion for materials of various types.

But when the absolute temperature is greater than approximately two-thirds of the melting
temperature, there can be sufficient molecular mobility that entropic or disordering effects must
be considered as well. This is often the case for polymers even at room temperature, due to
their weak intermolecular bonding.
When the temperature is high enough, polymer molecules can be viewed as an interpenetrat-

ing mass of (extremely long) wriggling worms, constantly changing their positions by rotation
about carbon-carbon single bonds. This wriggling does not require straining the bond lengths
or angles, and large changes in position are possible with no change in internal bonding energy.

Figure 8: Conformational change in polymers.

The shape, or “conformation” of a polymer molecule can range from a fully extended chain
to a randomly coiled sphere (see Fig. 8). Statistically, the coiled shape is much more likely than
the extended one, simply because there are so many ways the chain can be coiled and only one
way it can be fully extended. In thermodynamic terms, the entropy of the coiled conformation
is very high (many possible “microstates”), and the entropy of the extended conformation is
very low (only one possible microstate). If the chain is extended and then released, there will be
more wriggling motions tending to the most probable state than to even more highly stretched
states; the material would therefore shrink back to its unstretched and highest-entropy state.
Equivalently, a person holding the material in the stretched state would feel a tensile force as
the material tries to unstretch and is prevented from doing so. These effects are due to entropic
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factors, and not internal bond energy.
It is possible for materials to exhibit both internal energy and entropic elasticity. Energy

effects dominate in most materials, but rubber is much more dependent on entropic effects. An
ideal rubber is one in which the response is completely entropic, with the internal energy changes
being negligible.
When we stretch a rubber band, the molecules in its interior become extended because they

are crosslinked by chemical or physical junctions as shown in Fig. 9. Without these links, the
molecules could simply slide past one another with little or no uncoiling. “Silly Putty ” is an
example of uncrosslinked polymer, and its lack of junction connections cause it to be a viscous
fluid rather than a useful elastomer that can bear sustained loads without continuing flow. The
crosslinks provide a means by which one molecule can pull on another, and thus establish load
transfer within the materials. They also have the effect of limiting how far the rubber can be
stretched before breaking, since the extent of the entropic uncoiling is limited by how far the
material can extend before pulling up tight against the network of junction points. We will see
below that the stiffness of a rubber can be controlled directly by adjusting the crosslink density,
and this is an example of process-structure-property control in materials.

Figure 9: Stretching of crosslinked or entangled polymers.

As the temperature is raised, the Brownian-type wriggling of the polymer is intensified,
so that the material seeks more vigorously to assume its random high-entropy state. This
means that the force needed to hold a rubber band at fixed elongation increases with increasing
temperature. Similarly, if the band is stretched by hanging a fixed weight on it, the band will
shrink as the temperature is raised. In some thermodynamic formalisms it is convenient to
model this behavior by letting the coefficient of thermal expansion be a variable parameter,
with the ability to become negative for sufficiently large tensile strains. This is a little tricky,
however; for instance, the stretched rubber band will contract only along its long axis when the
temperature is raised, and will become thicker in the transverse directions. The coefficient of
thermal expansion would have to be made not only stretch-dependent but also dependent on
direction (“anisotropic”).

Example 4

An interesting demonstration of the unusual thermal response of stretched rubber bands involves
replacing the spokes of a bicycle wheel with stretched rubber bands as seen in Fig. 10, then mounting
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the wheel so that a heat lamp shines on the bands to the right or left of the hub. As the bands warm
up, they contract. This pulls the rim closer to the hub, causing the wheel to become unbalanced. It
will then rotate under gravity, causing the warmed bands to move out from under the heat lamp and be
replaced other bands. The process continues, and the wheel rotates in a direction opposite to what would
be expected were the spokes to expand rather than contract on heating.

Figure 10: A bicycle wheel with entropic spokes.

The bicycle-wheel trick produces a rather weak response, and it is easy to stop the wheel with

only a light touch of the finger. However, the same idea, using very highly stretched urethane bands

and employing superheated geothermal steam as a heat source, becomes a viable route for generating

mechanical energy.

It is worthwhile to study the response of rubbery materials in some depth, partly because
this provides a broader view of the elasticity of materials. But this isn’t a purely academic
goal. Rubbery materials are being used in increasingly demanding mechanical applications (in
addition to tires, which is a very demanding application itself). Elastomeric bearings, vibration-
control supports, and biomedical prostheses are but a few examples. We will outline what is
known as the “kinetic theory of rubber elasticity,” which treats the entropic effect using concepts
of statistical thermodynamics. This theory stands as one of the very most successful atomistic
theories of mechanical response. It leads to a result of satisfying accuracy without the need for
adjustable parameters or other fudge factors.
When pressure-volume changes are not significant, the competition between internal energy

and entropy can be expressed by the Helmholtz free energy A = U − TS, where T is the
temperature and S is the entropy. The system will move toward configurations of lowest free
energy, which it can do either by reducing its internal energy or by increasing its entropy. Note
that the influence of the entropic term increases explicitly with increasing temperature. With
certain thermodynamic limitations in mind (see Prob. 5), the mechanical work dW = F dL done
by a force F acting through a differential displacement dL will produce an increase in free energy
given by

F dL = dW = dU − T dS (8)

or

dW
F =

dL
=

(
∂U

∂L

)
T,V

− T
(
∂S

(9)
∂L

)
T,V

For an ideal rubber, the energy change dU is negligible, so the force is related directly
to the temperature and the change in entropy dS produced by the force. To determine the
force-deformation relationship, we obviously need to consider how S changes with deformation.
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We begin by writing an expression for the conformation, or shape, of the segment of polymer
molecule between junction points as a statistical probability distribution. Here the length of
the segment is the important molecular parameter, not the length of the entire molecule. In the
simple form of this theory, which turns out to work quite well, each covalently bonded segment
is idealized as a freely-jointed sequence of n rigid links each having length a.

Figure 11: Random-walk model of polymer conformation

A reasonable model for the end-to-end distance of a randomly wriggling segment is that of a
“random walk” Gaussian distribution treated in elementary statistics. One end of the chain is
visualized at the origin of an xyz coordinate system as shown in Fig. 11, and each successive link
in the chain is attached with a random orientation relative to the previous link. (An elaboration
of the theory would constrain the orientation so as to maintain the 109◦ covalent bonding angle.)

1/2
The probability Ω1(r) that the other end of the chain is at a position r =

(
x2 + y2 + z2

be

)
can

shown to be

β3
Ω1(r) = √

π
exp(−β2r2) =

β3
√ exp

[
−β2

(
x2 + y2 + z2

π

)]
The parameter β is a scale factor related to the number of units n in the polymer segment and
the bond length a; specifically it turns out that β =

√
3/2n/a. This is the “bell-shaped curve”

well known to seasoned test-takers. The most probable end-to-end distance is seen to be zero,
which is expected because the chain will end up a given distance to the left (or up, or back) of
the origin exactly as often as it ends up the same distance to the right.
When the molecule is now stretched or otherwise deformed, the relative positions of the two

ends are changed. Deformation in elastomers is usually described in terms of extension ratios,
which are the ratios of stretched to original dimensions, L/L0. Stretches in the x, y, and z
directions are denoted by λx, λy, and λz respectively, The deformation is assumed to be affine,
i.e. the end-to-end distances of each molecular segment increase by these same ratios. Hence
if we continue to view one end of the chain at the origin the other end will have moved to
x2 = λxx, y2 = λyy, z2 = λzz. The configurational probability of a segment being found in this
stretched state is then

β3
Ω2 = √ exp −β2 λ2x2 + λ2y2 + λ2z2

π

[ (
x y z

)]
The relative change in probabilities between the perturbed and unperturbed states can now be
written as

Ω2
ln
Ω1
= −β2

[(
λ2x − 1

)
x2 +

(
λ2y − 1

)
y2 +

(
λ2z − 1

)
z2
]
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Several strategems have been used in the literature to simplify this expression. One simple
approach is to let the initial position of the segment end x, y, z be such that x2 = y2 = z2 = r20/3,

where r20 is the initial mean square end-to-end distance of the segment. (This is not zero, since
when squares are taken the negative values no longer cancel the positive ones.) It can also be

shown (see Prob. 8) that the distance r20 is related to the number of bonds n in the segment and

the bond length a by r20 = na
2. Making these substitutions and simplifying, we have

ln
Ω2
Ω1
= −
1

(10)
2

(
λ2 2
x + λy + λ

2
z − 3

)
As is taught in subjects in statistical thermodynamics, changes in configurational probability
are related to corresponding changes in thermodynamic entropy by the “Boltzman relation” as

Ω2
ΔS = k ln

Ω1

where k = 1.38× 10−23 J/K is Boltzman’s constant. Substituting Eqn. 10 in this relation:

k
ΔS = − λ2 2

x + λy + λ
2
z − 32

This is the entropy change for one segment.

(
If there are N ch

)
ain segments per unit volume, the

total entropy change per unit volume ΔSV is just N times this quantity:

Nk
ΔSV = − λ2 + λ2 + λ2 − 3 (11)

2

(
x y z

)
The associated work (per unit volume) required to change the entropy by this amount is

NkT
ΔWV = −TΔSV = +

2

(
λ2x + λ

2
y + λ

2
z − 3

)
(12)

The quantity ΔWV is therefore the strain energy per unit volume contained in an ideal rubber
stretched by λx, λy, λz.

Example 5

Recent research by Prof. Christine Ortiz has demonstrated that the elasticity of individual polymer
chains can be measured using a variety of high-resolution force spectroscopy techniques, such as atomic
force microscopy (AFM). At low to moderate extensions, most polymer chains behave as ideal, entropic,
random coils; i.e. molecular rubber bands. This is shown in Fig. 12, which displays AFM data (re-
traction force, Fchain, versus chain end-to-end separation distance) for stretching and uncoiling of single
polystyrene chains of different lengths. By fitting experimental data with theoretical polymer physics
models of freely-jointed chains (red lines in Fig. 12) or worm-like chains, we can estimate the “statistical
segment length” or local chain stiffness and use this parameter as a probe of chemical structure and
local environmental effects (e.g. electrostatic interactions, solvent quality, etc.). In addition, force spec-
troscopy can be used to measure noncovalent, physisorption forces of single polymer chains on surfaces
and covalent bond strength (chain “fracture”).

To illustrate the use of Eqn. 12 for a simple but useful case, consider a rubber band, initially
of length L0 which is stretched to a new length L. Hence λ = λx = L/L0. To a very good
approximation, rubbery materials maintain a constant volume during deformation, and this
lets us compute the transverse contractions λy and λz which accompany the stretch λx. An
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Figure 12: Experimental measurements from numerous force spectroscopy (AFM) experiments
of force-elongation response of single polystyrene segments in toluene, compared to the freely-
jointed chain model. The statistical segment length is 0.68, and n = number of molecular units
in the segment.

expression for the change ΔV in a cubical volume of initial dimensions a0, b0, c0 which is stretched
to new dimensions a, b, c is

ΔV = abc− a0b0c0 = (a0λx)(b0λy)(c0λz)− a0b0c0 = a0b0c0(λxλyλz − 1)

Setting this to zero gives

λxλyλz = 1 (13)

Hence the contractions in the y and z directions are

λ2
1

y = λ
2
z = λ

Using this in Eqn. 12, the force F needed to induce the deformation can be found by differenti-
ating the total strain energy according to Eqn. 9:

dW
F =

dL
=
d(V ΔWV )

L0 dλ
= A0

NkT

2

(
2λ−

2

λ2

)

Here A0 = V/L0 is the original area. Dividing by A0 to obtain the engineering stress:

σ = NkT

(
λ−

1

λ2

)
(14)

Clearly, the parameter NkT is related to the stiffness of the rubber, as it gives the stress σ
needed to induce a given extension λ. It can be shown (see Prob. 10) that the initial modulus
— the slope of the stress-strain curve at the origin — is controlled by the temperature and the
crosslink density according to E = 3NkT .
Crosslinking in rubber is usually done in the “vulcanizing” process invented by Charles

Goodyear in 1839. In this process sulfur abstracts reactive hydrogens adjacent to the double
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bonds in the rubber molecule, and forms permanent bridges between adjacent molecules. When
crosslinking is done by using approximately 5% sulfur, a conventional rubber is obtained. When
the sulfur is increased to ≈ 30–50%, a hard and brittle material named ebonite (or simply “hard
rubber”) is produced instead.
The volume density of chain segments N is also the density of junction points. This quan-

tity is related to the specimen density ρ and the molecular weight between crosslinks Mc as
Mc = ρNA/N , where N is the number of crosslinks per unit volume and NA = 6.023 × 1023 is
Avogadro’s Number. When N is expressed in terms of moles per unit volume, we have simply
Mc = ρ/N and the quantity NkT in Eqn. 14 is replaced by NRT , where R = kNA = 8.314
J/mol-◦K is the Gas Constant.

Example 6

The Young’s modulus of a rubber is measured at E = 3.5 MPa for a temperature of T = 300 ◦K. The
molar crosslink density is then

E
N =

3RT
=

3.5× 106 N/m2

3× 8.314 N·m
= 468 mol/m3

300mol·K × K

The molecular weight per segment is

ρ
Mc =

N
=
1100 kg/m3

468 mol/m3
= 2350 gm/mol

Example 7

A person with more entrepreneurial zeal than caution wishes to start a bungee-jumping company, and
naturally wants to know how far the bungee cord will stretch; the clients sometimes complain if the cord
fails to stop them before they reach the asphalt. It’s probably easiest to obtain a first estimate from an
energy point of view: say the unstretched length of the cord is L0, and that this is also the distance the
jumper free-falls before the cord begins to stretch. Just as the cord begins to stretch, the the jumper
has lost an amount of potential energy wL0, where w is the jumper’s weight. The jumper’s velocity at
this time could then be calculated from (mv2)/2 = wL0 if desired, where m = w/g is the jumper’s mass
and g is the acceleration of gravity. When the jumper’s velocity has been brought to zero by the cord
(assuming the cord doesn’t break first, and the ground doesn’t intervene), this energy will now reside
as entropic strain energy within the cord. Using Eqn. 12, we can equate the initial and final energies to
obtain

A0L0 ·NRT
wL0 =

2

(
λ2 +

2
− 3
λ

)

Here A0 L0 is the total volume of the cord; the entropic energy per unit volume ΔWV must be multiplied
by the volume to give total energy. Dividing out the initial length L0 and using E = 3NRT , this result
can be written in the dimensionless form

w

A0E
=
1

6

(
λ2 +

2
− 3
λ

)

The closed-form solution for λ is messy, but the variable w/A0E can easily be plotted versus λ (see Fig.
13.) Note that the length L0 has canceled from the result, although it is still present implicitly in the
extension ratio λ = L/L0.
Taking a typical design case for illustration, say the desired extension ratio is taken at λ = 3 for a

rubber cord of initial modulus E = 100 psi; this stops the jumper safely above the pavement and is verified
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Figure 13: Dimensionless weight versus cord extension.

to be well below the breaking extension of the cord. The value of the parameter w/AE corresponding to
λ = 3 is read from the graph to be 1.11. For a jumper weight of 150 lb, this corresponds to A = 1.35 in2,
or a cord diameter of 1.31 in.

If ever there was a strong case for field testing, this is it. An analysis such as this is nothing more

than a crude starting point, and many tests such as drops with sandbags are obviously called for. Even

then, the insurance costs would likely be very substantial.

Note that the stress-strain response for rubber elasticity is nonlinear, and that the stiffness
as given by the stress needed to produce a given deformation is predicted to increase with
increasing temperature. This is in accord with the concept of more vigorous wriggling with a
statistical bias toward the more disordered state. The rubber elasticity equation works well at
lower extensions, but tends to deviate from experimental values at high extensions where the
segment configurations become nongaussian.
Deviations from Eqn. 14 can also occur due to crystallization at high elongations. (Rubbers

are normally noncrystalline, and in fact polymers such as polyethylene that crystallize readily
are not elastomeric due to the rigidity imparted by the crystallites.) However, the decreased
entropy that accompanies stretching in rubber increases the crystalline melting temperature
according to the well-known thermodynamic relation

ΔU
Tm = (15)

ΔS

where ΔU and ΔS are the change in internal energy and entropy on crystallization. The quantity
ΔS is reduced if stretching has already lowered the entropy, so the crystallization temperature
rises. If it rises above room temperature, the rubber develops crystallites that stiffen it consider-
ably and cause further deviation from the rubber elasticity equation. (Since the crystallization is
exothermic, the material will also increase in temperature; this can often be sensed by stretching
a rubber band and then touching it to the lips.) Strain-induced crystallization also helps inhibit
crack growth, and the excellent abrasion resistance of natural rubber is related to the ease with
which it crystallizes upon stretching.

Problems

1. Justify the first two terms of the Madelung series given in Eqn. 3.

2. Using Eqn. 6 to write the parameter B in terms of the equilibrium interionic distance r0,
show that the binding energy of an ionic crystal, per bond pair, can be written as
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(n− 1)ACe2
U = −

nr0

where A is the Madelung constant, C is the appropriate units conversion factor, and e is
the ionic charge.

3. Measurements of bulk compressibility are valuable for probing the bond energy function,
because unlike simple tension, hydrostatic pressure causes the interionic distance to de-
crease uniformly. The modulus of compressibility K of a solid is the ratio of the pressure
p needed to induce a relative change in volume dV/V :

dp
K = −

(dV )/V

The minus sign is needed because positive pressures induce reduced volumes (volume
change negative).

(a) Use the relation dU = pdV for the energy associated with pressure acting through a
small volume change to show

K

V0
=

(
d2U

dV 2

)
V=V0

where V0 is the crystal volume at the equilibrium interionic spacing r = a0.

(b) The volume of an ionic crystal containing N negative and N positive ions can be
written as V = cNr3 where c is a constant dependent on the type of lattice (2 for NaCl).
Use this to obtain the relation

K

V0
=

(
d2U

dV 2

)
V=V0

=
1

9c2N2r2
·
d

dr

(
1

r2
dU

dr

)

(c) Carry out the indicated differentiation of the expression for binding energy to obtain
the expression

K

V0
=
K

cNr30
=

N

9c2Nr20

[
−4ACe

r50
+
n(n+ 3)B

rn+40

]

−Then using the expression B = ACe2rn 10 /n, obtain the formula for n in terms of com-
pressibility:

9cr4
n = 1 + 0K

ACe2

4. Complete the spreadsheet below, filling in the values for repulsion exponent n and lattice
energy U .
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type r0 (pm) K (GPa) A n U(kJ/mol) Uexpt
LiF 201.4 6.710e+01 1.750 -1014

NaCl 282.0 2.400e+01 1.750 -764

KBr 329.8 1.480e+01 1.750 -663

The column labeled Uexpt lists experimentally obtained values of the lattice energy.

5. Given the definition of Helmholtz free energy:

A = U − TS

along with the first and second laws of thermodynamics:

dU = dQ+ dW

dQ = TdS

where U is the internal energy, T is the temperature, S is the entropy, Q is the heat and
W is the mechanical work, show that the force F required to hold the ends of a tensile
specimen a length L apart is related to the Helmholtz energy as

F =

(
∂A

∂L

)
T,V

6. Show that the temperature dependence of the force needed to hold a tensile specimen at
fixed length as the temperature is changed (neglecting thermal expansion effects) is related
to the dependence of the entropy on extension as

(
∂F

∂T

)
L

= −
(
∂S

∂L

)
T

7. (a) Show that if an ideal rubber (dU = 0) of mass M and specific heat c is extended
adiabatically, its temperature will change according to the relation

∂T

∂L
=
−T

Mc

(
∂S

∂L

)

i.e. if the entropy is reduced upon extension, the temperature will rise. This is known as
the thermoelastic effect.

(b) Use this expression to obtain the temperature change dT in terms of an increase dλ in
the extension ratio as

σ
dT = dλ

ρc

where σ is the engineering stress (load divided by original area) and ρ is the mass density.

8. Show that the end-to-end distance r0 of a chain composed of n freely-jointed links of length
a is given by ro = na

2.
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9. Evalute the temperature rise in a rubber specimen of ρ = 1100 kg/m3, c = 2 kJ/kg·K,
NkT = 500 kPa, subjected to an axial extension λ = 4.

10. Show that the initial engineering modulus of a rubber whose stress-strain curve is given
by Eqn. 14 is E = 3NRT .

11. Calculate the Young’s modulus of a rubber of density 1100 gm/mol and whose inter-
crosslink segments have a molecular weight of 2500 gm/mol. The temperature is 25◦C.

12. Show that in the case of biaxial extension (λx and λy prescribed), the x-direction stress
based on the original cross-sectional dimensions is

σx = NkT

(
1

λx −
λ3xλ

2
y

)

and based on the deformed dimensions

tσx = NkT

(
λ2

1
x − λ2xλ

2
y

)

where the t subscript indicates a “true” or current stress.

13. Estimate the initial elastic modulus E, at a temperature of 20C, of an elastomer having a
molecular weight of 7,500 gm/mol between crosslinks and a density of 1.0 gm/cm3. What
is the percentage change in the modulus if the temperature is raised to 40C?

14. Consider a line on a rubber sheet, originally oriented at an angle φ0 from the vertical.
When the sheet is stretched in the vertical direction by an amount λy = λ, the line rotates
to a new inclination angle φ′. Show that

tanφ′
1

= tan φ0
λ3/2

15. Before stretching, the molecular segments in a rubber sheet are assumed to be distributed
uniformly over all directions, so the the fraction of segments f(φ) oriented in a particular
range of angles dφ is

dA
f(φ) =

A
=
2πr2 sinφdφ

2πr
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The Herrman orientation parameter is defined in terms of the mean orientation as

1
f =

(
3〈cos2 φ′〉 − 1

)
, 〈cos2φ′〉 =

∫ π/2
cos2 φ′f(φ) dφ

2 0

Using the result of the previous problem, plot the orientation function f as a function of
the extension ratio λ.
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