Welcome to 3,091

Lecture 19

October 23, 2009

Point & Line Defects

Taxonomy of Defects: Classify by Dimensionality

- 0-dimensional: point defects
- 1-dimensional: line defects
- 2-dimensional: interfacial defects
- 3-dimensional: bulk defects

- localized disruption in regularity of the lattice
- on and between lattice sites

1. Substitutional Impurity

- occupies normal lattice site
- dopant ©, e.g., P in Si; B in C_(diamond)
- alloying element ©, e.g., Mg in Al; or Ni in Au
- contaminant 8, Li⁺ in NaCl

- occupies position between lattice sites
- alloying element @, e.g., C in Fe; or H in LaNis
- contaminant 8, H in Fe

Courtesy of John Wiley & Sons. Used with permission.

Image by Cdang on Wikipedia.

- localized disruption in regularity of the lattice
- on and between lattice sites

1. Substitutional Impurity

- occupies normal lattice site
- dopant ©, e.g., P in Si; B in C_(diamond)
- alloying element ©, e.g., Mg in Al; or Ni in Au
- contaminant 8, Li⁺ in NaCl

- occupies position between lattice sites
- alloying element @, e.g., C in Fe; or H in LaNis
- contaminant 8, H in Fe

Photo of the Ho	ope Diamond removed	d due to copyright restr	ictions.

Image removed due to copyright restrictions. Please see the cover of Post, Jeffrey E. *The National Gem Collection*. Washington, DC: Smithsonian Institution, 1997. ISBN: 9780810936904.

- localized disruption in regularity of the lattice
- on and between lattice sites

1. Substitutional Impurity

- occupies normal lattice site
- dopant ©, e.g., P in Si; B in C_(diamond)
- alloying element ©, e.g., Mg in Al; or Ni in Au
- contaminant 8, Li⁺ in NaCl

- occupies position between lattice sites
- alloying element @, e.g., C in Fe; or H in LaNis
- contaminant 8, H in Fe

Courtesy of John Wiley & Sons. Used with permission.

Image by Cdang on Wikipedia.

- localized disruption in regularity of the lattice
- on and between lattice sites

1. Substitutional Impurity

- occupies normal lattice site
- dopant ©, e.g., P in Si; B in C_(diamond)
- alloying element ©, e.g., Mg in Al; or Ni in Au
- contaminant 8, Li⁺ in NaCl

- occupies position between lattice sites
- alloying element @, e.g., C in Fe; or H in LaNis
- contaminant 8, H in Fe

3. Vacancy

- unoccupied lattice site
- formed at time of crystallization
- formed in service under extreme conditions

Image by Cdang on Wikipedia.

3. Vacancy

- unoccupied lattice site
- formed at time of crystallization
- formed in service under extreme conditions

Monovacancies and divacancies in copper Reanalysis of experimental data

G. Neumanna, V. Töllea, C. Tuijnb,*

*Institut für Physikalische Chemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
*Department of Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands

Received 31 May 1999

Abstract

The vacancy concentrations c_v in copper measured by means of the absolute technique (Hehenkamp et al., Phys. Rev. B 45 (1992) 1998) and those derived from positron lifetime studies (Kluin, Philos. Mag A 65 (1992) 1263) are reanalysed. Taking into account the results of quenching and annealing investigations the best fit to the temperature function of c_v is described by $H_{1v}^F = 1.03 \, \text{eV}$ and $S_{1v}^F/k = 1.1$ for the monovacancy formation enthalpy and entropy and a divacancy binding enthalpy and entropy of $H_{2v}^B = -0.23 \, \text{eV}$ (attractive interaction) and $S_{2v}^B/k = 2.8$, respectively. Accordingly, the divacancy concentration amounts to 1.5×10^{-4} at the melting temperature. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Vacancies; Monovacancies; Divacancies; Copper

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Point Defects in Ionic Crystals

 special issues associated with the need to maintain global charge neutrality

1. Schottky Imperfection

 formation of equivalent (not necessarily equal) numbers of cationic and anionic vacancies

2. Frenkel Imperfection

- formation of an ion vacancy and an ion interstitial

3. F-Center

- formation of an ion vacancy and bound electron

Point Defects in Ionic Crystals

 special issues associated with the need to maintain global charge neutrality

1. Schottky Imperfection

 formation of equivalent (not necessarily equal) numbers of cationic and anionic vacancies

2. Frenkel Imperfection

- formation of an ion vacancy and an ion interstitial

3. F-Center

- formation of an ion vacancy and bound electron

Point Defects in Ionic Crystals

 special issues associated with the need to maintain global charge neutrality

1. Schottky Imperfection

 formation of equivalent (not necessarily equal) numbers of cationic and anionic vacancies

2. Frenkel Imperfection

- formation of an ion vacancy and an ion interstitial

3. F-Center

- formation of an ion vacancy and bound electron

Averill, B., and P. Eldredge. *Chemistry: Principles, Patterns, and Applications*. Flat World Knowledge, 2011. ISBN: 9781453331224.

Image by MIT OpenCourseWare. Adapted from Fig. 9.4 in Ashby, M. F., and D. R. H. Jones. Engineering Materials 1. Boston, MA: Elsevier Butterworth-Heinemann, 2005.

Image by MIT OpenCourseWare.

Modeling dislocations in a soap bubble raft (Bragg and Nye)

3.091SC Introduction to Solid State Chemistry Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.