Session #26: Homework Solutions

Problem #1

(a) Identify the conjugate acid-base pairs in the following reactions:

(i)
$$HI(aq) + H_2O(l) \rightarrow H_3O^+(aq) + I^-(aq)$$

(ii)
$$CH_3COOH(aq) + OH^-(aq) \rightarrow CH_3COO^-(aq) + H_2O(l)$$

(iii)
$$NH_3(aq) + H_2O(l) \rightarrow NH_4^+(aq) + OH^-(aq)$$

- (b) Identify which of the following cannot be a Brønsted base and give a reason for your choices: H_3O^+ , $AICI_4^-$, CN^- , O^{2-} , SiH_4 , AsH_3 .
- (c) Estimate the pH and pOH of a 0.03091 M solution of hydroiodic acid $(K_A \approx 10^9)$.

Solution

(a) (i)
$$HI(aq) + H_2O(l) \rightarrow H_3O^+(aq) + I^-(aq)$$

(ii)
$$CH_3COOH(aq) + OH^-(aq) \rightarrow CH_3COO^-(aq) + H_2O(l)$$

(iii)
$$NH_3$$
 $(aq) + H_2O$ $(I) \rightarrow NH_4^+$ $(aq) + OH^ (aq)$

- (b) H_3O^+ , $AlCl_4^-$, and SiH_4 . SiH_4 and $AlCl_4^-$ cannot accept a proton due to lack of unpaired electrons. While H_3O^+ does have a pair of nonbonding electrons and so, in principle, could accept another proton, H_4O^{2+} is not observed.
- (c) HI is a strong acid \Rightarrow complete dissociation

$$\therefore$$
 0.03091 M HI (aq) \Rightarrow 0.03091 M = $\begin{bmatrix} H^+ \end{bmatrix}$ = $\begin{bmatrix} I^- \end{bmatrix}$

$$\therefore pH = -log_{10}[H^+] = -log_{10} 0.03091 = 1.51$$

$$pOH + pH = 14 \Rightarrow pOH = 12.49$$

MIT OpenCourseWare http://ocw.mit.edu

3.091SC Introduction to Solid State Chemistry Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.